ISSN 2466-4677; e-ISSN 2466-4847
SCImago Journal Rank
2024: SJR=0.300
CWTS Journal Indicators
2024: SNIP=0.77
ENHANCED THERMAL PERFORMANCE ANALYSIS OF SINGLE AND DOUBLE SLOPE SOLAR STILLS COATED WITH TiO2 NANOPARTICLE-INFUSED NANOPAINT
Authors:
Pavan Kumar Pathak1
, Bholu Kumar2
, Rahul Agrawal3
1Research Scholar, Department of Mechanical Engineering, Poornima University, Jaipur, Rajasthan, India
2Department of Mechanical Engineering, Poornima University, Jaipur, Rajasthan, India
3Department of Mechanical Engineering, Prestige Institute of Management and Research, Bhopal, India
Received: 8 July 2025
Revised: 1 September 2025
Accepted: 15 September 2025
Published: 30 September 2025
Abstract:
Keywords:
References:
[1] H. Panchal, K.K. Sadasivuni, Experimental investigation on solar still with nanomaterial and dripping arrangement. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 47(1), 2025: 1886–1896. https://doi.org/10.1080/15567036.2020.1834647
[2] A.H. Abed, H.A. Hoshi, M.H. Jabal, Experimental investigation of modified solar still coupled with high-frequency ultrasonic vaporizer and phase change material capsules. Case Studies in Thermal Engineering, 28, 2021: 101531. https://doi.org/10.1016/j.csite.2021.101531
[3] G. Murali, P. Ramani, M. Murugan, P.V. Elumalai, N.U. Ranjan Goud, S. Prabhakar, Improved solar still productivity using PCM and nano-PCM composites integrated energy storage. Scientific Reports, 14, 2024: 15609. https://doi.org/10.1038/s41598-024-65418-1
[4] M. Abdelgaied, Y. Zakaria, A.E. Kabeel, F.A. Essa, Improving the tubular solar still performance using square and circular hollow fins with phase change materials. Journal of Energy Storage, 38, 2021: 102564. https://doi.org/10.1016/j.est.2021.102564
[5] A.E. Kabeel, R. Sathyamurthy, A.M. Manokar, S.W. Sharshir, F.A. Essa, A.H. Elshiekh, Experimental study on tubular solar still using Graphene Oxide Nanoparticles in Phase Change Material (NPCM’s) for fresh water production. Journal of Energy Storage, 28, 2020: 101204. https://doi.org/10.1016/j.est.2020.101204
[6] V.V. Tyagi, S.K. Pathak, K. Chopra, A. Saxena, A. Dwivedi, V. Goel, R.K. Sharma, R. Agrawal, A.A. Kandil, M.M. Awad, R. Kothari, A.K. Pandey, Sustainable growth of solar drying technologies: Advancing the use of thermal energy storage for domestic and industrial applications. Journal of Energy Storage, 99(Part B), 2024: 113320. https://doi.org/10.1016/j.est.2024.113320
[7] M.R. Hajizadeh, F. Selimefendigil, T. Muhammad, M. Ramzan, H. Babazadeh, Z. Li, Solidification of PCM with nano powders inside a heat exchanger. Journal of Molecular Liquids, 306, 2020: 112892.
https://doi.org/10.1016/j.molliq.2020.112892
[8] M. Jurčević, S. Nižetić, M. Arıcı, H.A. Tuan, E. Giama, A. Papadopoulos, Thermal constant analysis of phase change nanocomposites and discussion on selection strategies with respect to economic constraints. Sustainable Energy Technologies and Assessments, 43, 2021: 100957.
https://doi.org/10.1016/j.seta.2020.100957
[9] A.E. Kabeel, Z.M. Omara, F.A. Essa, Numerical investigation of modified solar still using nanofluids and external condenser. Journal of the Taiwan Institute of Chemical Engineers, 75, 2017: 77–86.
https://doi.org/10.1016/j.jtice.2017.01.017
[10] M.A. Alazwari, M. Algarni, M.R. Safaei, Effects of various types of nanomaterials on PCM melting process in a thermal energy storage system for solar cooling application using CFD and MCMC methods. International Journal of Heat and Mass Transfer, 195, 2022: 123204.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123204
[11] M. Alktranee, Q. Al-Yasiri, K.S. Mohammed, M. Arıcı, M. Szabó, P. Bencs, Energy, exergy, and economic analysis of indirect solar dryer integrated phase change material cans. Energy Conversion and Management: X, 26, 2025: 100986. https://doi.org/10.1016/j.ecmx.2025.100986
[12] S.M. Abzal, J.K. Dash, C. Mahata, A. Guchhait, A. Kumar, S. Ramakrishna, G.K. Dalapati, Improvement of p-CuO/n-Si heterojunction solar cell performance through nitrogen plasma treatment. Journal of Electronic Materials, 50(4), 202: 1720–1725. https://doi.org/10.1007/s11664-020-08593-x
[13] R. Agrawal, R.K. Sharma, K. Sharma, M.I.H. Siddiqui, Thermophysical characterization and chemical stability of Ag₂O-enhanced eutectic nano-PCMs for moderate-temperature applications. International Journal of Chemical Reactor Engineering, advance online publication, 2025. https://doi.org/10.1515/ijcre-2025-0081
[14] D.H.A. Besisa, E.M.M. Ewais, Y.M.Z. Ahmed, A comparative study of thermal conductivity and thermal emissivity of high temperature solar absorber of ZrO₂/Fe₂O₃ and Al₂O₃/CuO ceramics. Ceramics International, 47(20), 28252–28259. https://doi.org/10.1016/j.ceramint.2021.06.240
[15] K. Gaur, S. Chauhan, Ajit, G. Kajal, Productivity analysis of pyramid solar still using phase change material and hybrid nanofluid. Lecture Notes in Mechanical Engineering, 2022: 621–634.
https://doi.org/10.1007/978-981-99-1894-2_53
[16] T. Egli, J. Bolluger, F. Kienast, Evaluating ecosystem service trade-offs with wind electricity production in Switzerland. Renewable and Sustainable Energy Reviews, 67, 2017: 1308–1330.
https://doi.org/10.1016/j.rser.2016.09.074
[17] M.M. Ali Saeed, D.M. Hachim, H.G. Hameed, Numerical investigation for single slope solar still performance with optimal amount of Nano-PCM. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 63(2), 2024: 302–316.
[18] R. Agrawal, K.D.P. Singh, Performance evaluation of double slope solar still augmented with binary eutectic phase change material and steel wool fibre. Sustainable Energy Technologies and Assessments, 48, 2021: 101597. https://doi.org/10.1016/j.seta.2021.101597
[19] P. Dumka, Y. Kushwah, A. Sharma, D.R. Mishra, Comparative analysis and experimental evaluation of single slope solar still augmented with permanent magnets and conventional solar still. Desalination, 459, 2019: 34–45. https://doi.org/10.1016/j.desal.2019.02.012
[20] A.E. Kabeel, R. Sathyamurthy, S.W. Sharshir, A. Muthumanokar, H. Panchal, N. Prakash, C. Prasad, S. Nandakumar, M.S. El Kady, Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO₂ nano black paint. Journal of Cleaner Production, 213, 2019: 185–191.
https://doi.org/10.1016/j.jclepro.2018.12.185
[21] J. Kateshia, V.J. Lakhera, Analysis of solar still integrated with phase change material and pin fins as absorbing material. Journal of Energy Storage, 35, 2021: 102292. https://doi.org/10.1016/j.est.2021.102292
[22] M. Arici, E. Tutuncu, A. Campo, Numerical investigation of melting of paraffin wax dispersed with CuO nanoparticles inside a square enclosure. Heat Transfer Research, 49(9), 2018: 847–863.
https://doi.org/10.1615/HeatTransRes.2018019748
[23] N.A. Pambudi, I.R. Nanda, A.D. Saputro, The energy efficiency of a modified v-corrugated zinc collector on the performance of solar water heater (SWH). Results Engineering, 18, 2023: 101174.
https://doi.org/10.1016/j.rineng.2023.101174
[24] L.O. Afolabi, C.C. Enweremadu, M.W. Kareem, A.I. Arogundade, K. Irshad, S. Islam, K.O. Oladosu, A.M. Elfaghi, D.H. Didane, Experimental investigation of double slope solar still integrated with PCM nanoadditives microencapsulated thermal energy storage. Desalination, 553, 2023: 116477.
https://doi.org/10.1016/j.desal.2023.116477
[25] W. Hamali, M.Y. Almusawa, Transient heat transfer of NEPCM during solidification using Galerkin method. Case Studies in Thermal Engineering, 35, 2021: 102114. https://doi.org/10.1016/j.csite.2022.102114
[26] K. Ganesan, D.P. Winston, S. Ravishankar, S. Muthusamy, Investigational study on improving the yield from hybrid PV/T modified conventional solar still with enhanced evaporation and condensation technique—An experimental approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 2022: 5267–5286. https://doi.org/10.1080/15567036.2022.2083273
© 2025 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
P.K. Pathak, B. Kumar, R. Agrawal, Enhanced Thermal Performance Analysis of Single and Double Slope Solar Stills Coated With TIO2 Nanoparticle-Infused Nanopaint. Applied Engineering Letters, 10(3), 2025: 146.159.
https://doi.org/10.46793/aeletters.2025.10.3.3
More Citation Formats
Pathak, P.K., Kumar, B., & Agrawal, R. (2025). Enhanced Thermal Performance Analysis of Single and Double Slope Solar Stills Coated With TIO2 Nanoparticle-Infused Nanopaint. Applied Engineering Letters, 10(3), 146.159.
https://doi.org/10.46793/aeletters.2025.10.3.3
Pathak, Pavan Kumar, et al. “Enhanced Thermal Performance Analysis of Single and Double Slope Solar Stills Coated With TIO2 Nanoparticle-Infused Nanopaint.“ Applied Engineering Letters, vol. 10, no. 3, 2025, pp. 146.159.
https://doi.org/10.46793/aeletters.2025.10.3.3
Pathak, Pavan Kumar, Bholu Kumar, and Rahul Agrawal. 2025. “Enhanced Thermal Performance Analysis of Single and Double Slope Solar Stills Coated With TIO2 Nanoparticle-Infused Nanopaint.“ Applied Engineering Letters, 10 (3): 146.159.
https://doi.org/10.46793/aeletters.2025.10.3.3
Pathak, P.K., Kumar, B. and Agrawal, R. (2025). Enhanced Thermal Performance Analysis of Single and Double Slope Solar Stills Coated With TIO2 Nanoparticle-Infused Nanopaint. Applied Engineering Letters, 10(3), pp. 146.159.
doi: 10.46793/aeletters.2025.10.3.3.
