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Abstract: 
Gas turbine energy technologies are one of the most important components 
of the modern and advanced energy industry. An important task is to ensure 
the uninterrupted operation of the equipment in a given period; therefore, 
monitoring and diagnostics of the technical condition of the equipment 
continue to play an important role in ensuring the quality of the gas turbine 
engine. The article examines the work on equipment diagnostics using 
machine learning. It discusses various solutions for combining machine-
learning methods and dealing with unbalanced data to solve the problem of 
predicting the failure of gas turbine equipment on a dataset that has the 
above disadvantages. There is a review of the solutions and methods under 
consideration to deal with the problems of the dataset. At the end, the 
authors provide a comparative table of the results of the application of the 
considered solutions based on the quality metrics of the Recall, Precision, F1-
score classification, and PR-AUC and ROC-AUC curves. 
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1. INTRODUCTION 
 

Gas turbine energy technologies are one of the 
most important components of the modern and 
advanced energy industry. One of the reasons for 
this situation is the role of gas in the fuel and energy 
balance of the largest economies. Thus, the share of 
gas in Russia's fuel balance is approximately 50%, 
and for other major players — the USA and the EU 
— 40% and 20%, respectively. Installing a 
combined-cycle power plant in the energy sector 
can already be a profitable option and generate 
income. The total share of gas fuel use in the global 
electric power industry is increasing linearly. It may 
reach up to 30% of all renewable resource options 
by 2070, compared with the indicator of 1965, 
which was only 15%. Gas turbine energy 
technologies can potentially play an important role 

in the next decade due to the transition from 
single—purpose single-fuel power plants to multi-
purpose multi-fuel energy chemical complexes, in 
which high-quality equipment will be a key element 
- high-power gas power turbines with high inlet 
temperatures [1]. 

The concentration of a significant amount of 
natural fuel resources in Russia — about 20% of 
natural gas and coal, 13% of oil from the total world 
reserves — has made it possible to ensure a stable 
level of fuel supply to the population and industrial 
needs of the country. At the same time, a significant 
number of thermal power plants already in 
operation continue to effectively function mainly by 
natural gas and reliably meet growing demand 
using existing basic equipment [2].  

Currently, gas turbine installations are not 
limited to use only in the field of electric power, 
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either as a separate key element of a modern power 
plant or as a part of a combined cycle plant, but also 
used in shipbuilding, the aviation industry, long-
range gas supply, heating installations and the 
railway industry [3]. 

Therefore, the issue of ensuring the reliability 
and uninterrupted operation of equipment during 
the operational phase remains sensitive. This 
problem is becoming especially critical in modern 
conditions, which are associated with the following 
factors [4]: 

• Rapid growth in the complexity of multi-object 
systems; 

• Increasing complexity of the performed 
functions; 

• Increased risks associated with equipment 
downtime; 

• Increased strict requirements for meeting 
occupational safety requirements; 

• Increased strict requirements for 
environmental protection. 

An analysis of the operating experience of 
various types of units shows that maintenance and 
repair account for 15-12% of the calendar time (3-
4% of which is occupied by unscheduled repairs), 
and their implementation is associated with high 
material costs. Maintenance and repair costs are 
one of the most important operational indicators of 
any technical system. Minimizing them in cases 
where the system is maintainable is practically 
impossible without effective monitoring and 
diagnosis of its condition. It also helps to reduce 
unexpected equipment failures, resulting in 
increased reliability of the equipment in operation 
[5, 6]. 

It is important to control the parameters of 
various components of a gas turbine installation 
(turbine, compressor, combustion chamber and 
bearings) that directly affect the whole operation of 
the engine. As well as their particular elements 
affect the operation of other gas turbine 
components, because a change in the efficiency of 
one of the components will change the efficiency of 
other components and the efficiency of the whole 
engine [7]. 

A classic gas turbine engine (GT) consists of: an 
air compressor, a combustion chamber and a gas 
turbine, as well as auxiliary systems that ensure its 
operation [8]. 

Through the air compressor, air from the 
atmosphere enters the combustion chamber at high 
pressure, along with the primary fuel. This 
interaction initiates the combustion process. The 
resulting mixture of gases (or combustion products) 

enters the GT turbine as a stream of incandescent 
gases, which causes its shaft to rotate due to the 
interaction of the turbine blades and the gas flow. 
The generated energy from rotation comes from 
the turbine shaft to the compressor and an electric 
generator, from the terminals of which, then, 
electrical energy is supplied [8]. 

Gas turbines operate according to the Brighton 
cycle, in which air becomes compressed and then 
fuel is added to it for subsequent ignition in order 
to generate energy. Important aspects in the 
operation of a gas turbine are the pressure ratio at 
which the inlet pressure is compared with the outlet 
pressure; ambient temperature, which affects the 
combustion of fuel in the turbine; turbine inlet 
temperature; and the intercooler, which is used to 
cool compressed air in the intercooler recovery 
system [9]. 

There are several methodological approaches to 
investigating equipment failures, including the FTA 
(Fault Tree Analysis) [10] and FMEA (Failure Mode 
and Effects Analysis) [11] methods. Modern control 
systems using industrial tools such as SCADA 
systems (Supervisory Control and Data Acquisition) 
and PLC (Programmable Logic Controller) allow 
obtaining information from numerous sensors 
measuring physical parameters, which allows for 
comprehensive diagnostics. Machine learning 
classification models are also used in many 
applications in industries [12]. Moreover, it 
becomes possible to identify non-obvious patterns 
and detect anomalies in order to make a complete 
and more accurate forecast based on all available 
aggregate information using machine learning and 
deep learning [13]. Thus, predictive accuracy is 
improved. 

Fahmi et al. [13] proposed a combined 
architecture based on Temporal Convolutional 
Neural Networks (TCN) and an Autoencoder. The 
proposed solution made it possible to solve the 
problem of detecting anomalies in the data of a 
time series of indicators of sensors of a gas turbine 
installation. 

Hanachi et al. [14] provide a comprehensive 
review of methods for monitoring, diagnosing, and 
predicting the technical condition of gas turbine 
engines, with a focus on performance data. One 
highlighted approach is the use of individual 
models, which are developed based on physical 
laws and operational indicators of the turbine. As an 
example of data-driven modelling, the authors 
discuss artificial neural networks in detail while also 
filtering a range of machine learning and deep 
learning methods. In addition, they mention fuzzy 
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logic, Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS), and Support Vector Machines (SVM) as 
commonly applied diagnostic and forecasting 
techniques. For forecasting, the study further cites 
models based on the Monte Carlo method, Markov 
chain theory, autoregressive models, and the Elman 
Artificial Neural Network (Elman ANN). 

Saj et al. [4] propose a neural network 
architecture that combines a one-dimensional 
Convolutional Neural Network (Conv1D) with a 
recurrent Long Short-Term Memory (LSTM) 
network. In this design, the Conv1D layers serve to 
reduce data dimensionality and extract relevant 
features, thereby eliminating the need for manual 
feature engineering or specialized feature selection 
algorithms. 

Amirkhani et al. [15] investigated the application 
of a series-parallel Nonlinear Autoregressive 
Exogenous (NARX) model for reliable fault detection 
in gas turbines. They evaluated four variants of the 
NARX model—MLP-NARX, RBF-NARX, GRNN-NARX, 
and ANFIS-NARX. All the demonstrated solutions 
showed a low regression error after training, which 
indicates the successful application of the proposed 
method. 

Nashed et al. [16] investigated acoustic emission 
analysis of gas turbine engines by converting 
acoustic signals into images and classifying them 
using a ResNet-50 convolutional neural network. 
The data were preprocessed with a Wavelet 
transform and various filters, enabling effective 
image-based classification of acoustic emission 
signals. 

This paper investigates the practical application 
of various artificial intelligence and machine 
learning algorithms for predicting gas turbine 
equipment failures. To address the data imbalance 
issue in the original data, data balancing methods 
like Tomek Links and the Synthetic Minority Over-
Sampling Technique were employed. The 
classification methods considered include logistic 
regression, categorical boosting, random under-
sampling boosting, echo-state network, ResNet, 
and a conditional variational autoencoder with a 
fuzzy logic layer. 

 
2. DESCRIPTION OF DATASET 

 
The dataset under study contains 10,000 non-

zero rows of real-type data, representing sensor 
readings collected in various engine operating 
modes; 11 non-target features that directly reflect 
sensor readings; and 1 target feature showing the 
engine condition. This dataset is designed to detect 

and classify engine malfunctions [17]. Table 1 shows 
the characteristic non-target features of the original 
dataset [17]. 

Table 1. The characteristic non-target features 

№ Parameter Unit Range 

1 
Peak vibration amplitude 
measured in the engine 

mm/s² 0.1-10.0 

2 
Root Mean Square (RMS) 
of engine vibration 

mm/s² 0.05-5.0 

3 
Frequency of engine 
vibration 

Hz 20-2000 

4 
Temperature of the 
engine surface 

°C 30-150 

5 
Temperature of the 
exhaust gas 

°C 200-600 

6 
Acoustic noise level 
generated by the engine 

dB 60-120 

7 
Acoustic signal frequency 
of the engine 

Hz 
100-
5000 

8 Intake manifold pressure kPa 90-120 

9 Exhaust gas pressure kPa 80-110 

10 

Energy of the signal in a 
specific frequency band 
(from Short-Time Fourier 
Transform) 

Arbitrary 
Units 

0.1-1.0 

11 
Average signal amplitude 
over specific time 
windows 

Arbitrary 
Units 

0.01-0.5 

 
 The target predicted indicator contains three 

possible engine conditions: normal (0), minor (1) 
and critical (2) faults. At the same time, the data is 
unbalanced and distributed as follows: 

• 60% of all data belongs to class "0" (normal 
condition) and reflects the correct operation 
of the engine without any faults; 

• 30% of all data belongs to class "1" (minor 
faults) and reflects engine operation with 
minor faults; 

• 10% of all data belongs to class "2" (critical 
faults) and reflects engine operation under 
severe fault conditions. 

At the same time, when considering the data in 
a dimension smaller than the original one, another 
dataset problem was identified — the overlap of 
classes. The visualization of data in a smaller 
dimension (in this case, in a two-dimensional space) 
obtained by the t-SNE dimension reduction method 
is shown in Fig. 1. 
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Fig. 1. Visualization of the source data in two-

dimensional space 

2.1 Data Preprocessing 
 

For the experiments, Robust Scaling method was 
used for normalization. The original dataset was 
divided into training and test samples in a ratio of 
70% to 30%, respectively. A training sample was 
used to train all the models, and a test sample was 
used to verify the prediction results of the final 
models. In addition, one-hot encoding of the target 
feature was performed for some machine-learning 
and deep-learning methods. 

The prediction results of each of the solutions 
were evaluated using the following indicators: 
responsiveness, accuracy, F1 score, PR-AUC and 
ROC-AUC curves. 

 
2.2 Data Preparation Methods 

 
To reduce the impact of data imbalance 

problems and overlapping classes of the dataset 
used, the following sampling modification methods, 
in combination with the solutions discussed in this 
section. 

Tomek Links (T-Links) is an incomplete sampling 
method developed by Tomek [18]. Initially, this 
method was considered for single-class 
classification and as an improvement of the nearest 
neighbour rule [19, 20]. A pair in Tomek's relations 
is such values of x and y (where x is an instance of 
class 0, y is an instance of class 1) for which there is 
no such value of z at which the inequality would be 
valid, as in (1), where d(x, y) is the distance between 
x and y: 

𝑑(𝑥, 𝑦) < 𝑑(𝑥, 𝑧) 𝑜𝑟 𝑑(𝑥, 𝑦) < 𝑑(𝑦, 𝑧). (1) 

Then such a pair of Links is characterized by x 
and y belonging to noise or their location on the 
border of two classes. Therefore, the Tomek Links 

method can be used as a sampling reduction 
method, which removes instances of the majority 
class [19]. Elhassan et al. (19] and Swana et al. [21] 
also claim that the combination of this method with 
other methods of reducing and increasing the 
sample sometimes improves the prediction results 
and allows taking into account minor classes. 

Over-sampling methods increase the number of 
minority instances by reproducing them, depending 
on the method used. The Synthetic Minority Over-
Sampling Technique (SMOTE), based on the k-
nearest neighbour method, is used to generate 
synthetic data of instances of the minority class 
based on pre-existing data of the same class and 
without duplication [21]. Unlike the classical 
sampling method, where examples of the minority 
class are either duplicated or reproduced randomly, 
the SMOTE algorithm creates new data by 
interpolating between several instances of the 
minority class located within a specific 
neighbourhood [22]. 

This method makes it possible to combat data 
overfitting due to the lack of duplication of 
generated examples, and improves the prediction 
of various models on unbalanced data [21]. 

 
3. MATERIALS AND METHODS 
 

3.1 Stages of the Classification Process 

 
The classification process is divided into the 

following stages: data preprocessing, data 
balancing (if necessary for a specific method), 
model training and tuning, and model evaluation. 
Fig. 2 demonstrates the diagram that represents the 
whole classification process in stages. 

 

Fig. 2. The diagram that represents the whole 

classification process in stages 
 
3.2 The Initial Proposed Solution 

 
The initial dataset also included a predefined 

solution to the classification problem, as described 
in Kaggle [23], where the naive Bayesian classifier 
(GaussianNB) was employed as the model. 
Following the training process, the classifier yielded 
the following performance metrics: Recall = 0.333, 
Precision = 0.198, F1-score = 0.249, PR-AUC = 
0.4035, and ROC-AUC = 0.500. The corresponding 
confusion matrix for this model is presented in 
Fig. 3. 
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Fig. 3. Confusion matrix for GaussianNB model 

prediction results 

Based on the results, it was concluded that the 
proposed solution demonstrates a complete 
disregard for minority classes and shows quality 
ratings of no more than 40%. 
 
3.3 Logistic Regression 

 
One of the most popular classification methods 

in machine learning is logistic regression. This 
method was used to compare it with the original 
one proposed because it also allows us to take into 
account class weights when predicting a label. 

Before training the logistic regression model, the 
Tomek Links method of reducing examples of the 
majority class was applied, and the increase in 
instances of minority classes using the SMOTE 
sampling method was subsequently performed on 
the prepared data. 

When predicting the trained model, the 
following metric values were obtained: Recall = 
0.356, Precision = 0.345, F1-score = 0.293, PR-AUC 
= 0.405, ROC-AUC = 0.503. Fig. 4 demonstrates the 
confusion matrix for the prediction results of this 
model in the test sample. Based on the results, it 
was concluded that the proposed solution 
demonstrates a complete disregard for minority 
classes and shows quality ratings of no more than 
40%. 

 

Fig. 4. Confusion matrix for Tomek Links + SMOTE + 

logistic regression model prediction results 

3.4 Implementation of Gradient Boosting 
Categorical Boosting (CatBoost) 

 
Gradient boosting is one of the most powerful 

machine learning methods that enables achieving 
high results in solving various practical tasks. The 
process of constructing an ensemble predictor 
provides its operation by performing gradient 
descent in a functional space. Categorical Boosting 
(CatBoost) is an implementation of gradient 
boosting that uses binary decision trees as basic 
predictors and copes well with categorical features 
[24]. The algorithm differs from other 
implementations of gradient boosting in the 
following aspects [25]: 

• Automatic processing of categorical features 
as numerical characteristics; 

• Using a combination of categorical features, 
taking advantage of the relationships between 
objects; 

• Using models of perfectly symmetrical trees 
can reduce overfitting and increase the 
generalizing accuracy of the algorithm. 

According to Prokhorenkova et al. [24] and Luo 
et al. [25], this algorithm shows better results 
compared to its analogues XGBoost and LightGBM. 

The technical implementation of CatBoost also 
allows for the flexible customization of the model's 
training. It allows selecting a specific loss function, 
a metric for predicting model quality, various 
settings for the used predictor of the tree (such as 
its depth), adding appropriate regularization, as 
well as several advanced options for adjusting 
weights to improve the susceptibility of the model 
to minority classes. Before training the CatBoost 
model, the Tomek Links method of reducing 
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examples of the majority class was applied, and the 
systematic increase in instances of minority classes 
using the SMOTE sampling method was 
subsequently performed on the prepared data. 

Table 2 shows the results of experiments on 
training the CatBoost model using various 
combinations of learning rate and depth 

parameters. 

Table 2. Results for different parameters combinations 

Recall 
Precision 
F1-score 

Learning rate 

0.1 0.01 0.001 0.0001 0.00001 

Depth 

4 
0.337 
0.338 
0.331 

0.327 
0.334 
0.312 

0.332 
0.336 
0.307 

0.343 
0.347 
0.310 

0.346 
0.347 
0.310 

5 
0.336 
0.336 
0.334 

0.328 
0.334 
0.317 

0.328 
0.331 
0.307 

0.346 
0.346 
0.313 

0.347 
0.348 
0.313 

6 
0.354 
0.353 
0.353 

0.338 
0.340 
0.332 

0.334 
0.335 
0.315 

0.355 
0.351 
0.322 

0.350 
0.349 
0.318 

7 
0.337 
0.338 
0.338 

0.339 
0.339 
0.337 

0.321 
0.324 
0.309 

0.342 
0.342 
0.317 

0.344 
0.344 
0.318 

8 
0.323 
0.323 
0.323 

0.335 
0.335 
0.335 

0.325 
0.328 
0.317 

0.341 
0.340 
0.322 

0.337 
0.339 
0.319 

9 
0.320 
0.319 
0.320 

0.324 
0.323 
0.323 

0.330 
0.329 
0.325 

0.340 
0.340 
0.327 

0.341 
0.340 
0.326 

10 
0.321 
0.321 
0.321 

0.322 
0.321 
0.321 

0.332 
0.330 
0.329 

0.332 
0.334 
0.325 

0.337 
0.339 
0.329 

 
In this article, the CatBoost model was trained 

on a prepared dataset with the following best 
parameters shown in Table 3. 
 
Table 3. Used CatBoost hyperparameters 

№ Parameter Value 

1 Learning rate 0.0001 

2 Loss function MultiClassOneVsAll 

3 Evaluation metric HingeLoss 

4 Class weight method Balanced 

5 L2 regularization 0.1 

6 Max tree depth 6 

7 Number of iterations 5000 

 
The prediction results of the trained model were 

evaluated using the previously mentioned metrics, 
which showed the following estimates: Recall = 
0.355, Precision = 0.351, F1-score = 0.322, PR-AUC 
= 0.407, ROC-AUC = 0.506. Fig. 5 demonstrates the 

confusion matrix for the prediction results of this 
model in the test sample. 

 

Fig. 5. Confusion matrix for Tomek Links + SMOTE + 

CatBoost model prediction results 

Due to the flexible configuration of the model, as 
well as the built-in processing of categorical 
features and the consideration of class weights, it 
was possible to achieve results that exceeded the 
initial proposed solution for the data set under 
study. At the same time, the confusion matrix 
illustrates the continued imbalance in data 
forecasting, still in favour of the majority class. 
 
3.5 Random Under-Sampling Method + Gradient 

Boosting (RUSBoost) 

 
The solution underlying this type of gradient 

boosting, the Random Under-Sampling method, is 
one of the most common data sampling methods 
due to its simplicity: deleting examples of the 
majority class occurs randomly until the desired 
class distribution is achieved. The presented variant 
of gradient boosting, RUSBoost, is based on a 
similar algorithm, SMOTEBoost, which, in turn, 
improves the variant of gradient boosting, 
AdaBoost. RUSBoost differs from its predecessor in 
a simpler algorithm, which helps to achieve a faster 
learning rate of the model and higher 
performance [26]. 

To eliminate the difference between the 
methods, the data was processed using a 
combination of Tomek Links + SMOTE sampling 
methods. As noted earlier, AdaBoost was used as 
the basis for boosting, while the classical decision 
tree for the classification problem was used as an 
internal evaluation model. 

A Cross-Validation grid search (GridSearchCV) 
was applied to select the hyperparameters of the 
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model. Intervals were set for selecting accelerator 
and evaluator hyperparameters, from which the 
best parameters were selected. Detailed 
information about the final parameters is given in 
Table 4.  

Table 4. Used RUSBoost hyperparameters 

No. Parameter Range Best 

1 Max tree depth (5, 10, 15) 15 

2 
Min samples 
split 

(3, 5, 10) 3 

3 Min leaf number (10, 15, 20) 10 

4 
Number of 
estimators 

(50, 100, 150, 200) 200 

5 Learning rate (0.1, 0.25, 0.5) 0.5 

 
When predicting the trained model, the 

following metric values were obtained: Recall = 
0.355, Precision = 0.359, F1-score = 0.354, PR-AUC 
= 0.412, ROC-AUC = 0.512. Fig. 6 demonstrates the 
confusion matrix for the prediction results of this 
model in the test sample. 

Thanks to a combination of methods for 
changing the initial sample, namely the Tomek Links 
+ SMOTE sequence + the Under-Sampling method 
built into the classifier, it was possible to achieve 
results that surpass the original proposed solution 
for the data set under study. At the same time, the 
confusion matrix illustrates the continued 
imbalance in data forecasting still in favour of the 
majority class. However, based on the same error 
matrix, we concluded that, despite better metrics 
than the CatBoost solution, this solution does not 
take into account minority classes. 

 

 
Fig. 6. Confusion matrix for Tomek Links + SMOTE + 

RUSBoost model prediction results 

3.6 Echo-State Network (ESN) 

 
One of the considered existing solutions used 

recurrent neural networks (RNN), which excel at 
predicting values or classes based on a specific time 
sequence, but their training is complex and 
computationally and time-consuming. As an 
alternative approach to learning, there is a way to 
use recurrent neural networks with Echo-State 
Networks (ESN). 

An echo state network is a fast and efficient 
recurrent neural network that consists of an input 
layer, a recurrent layer, called in ESN terminology a 
"reservoir" that contains a large number of sparsely 
connected neurons, and an output layer. The 
weights of the input layer and reservoir connections 
are fixed after initialization, while the output 
weights, on the contrary, can be trained by solving 
the linear regression problem [27]. 

The effectiveness of this approach stems from 
training only the weights of the output data, 
without altering the weights of the input layer and 
reservoir. This approach allows for faster training 
times and reduced computational costs. At the 
same time, studies of reservoir computing have 
shown that in some cases, this approach does not 
lose accuracy in comparison with classical RNNs 
[27]. 

Just as for previous solutions, the Tomek Links 
method of reducing examples of the majority class 
was applied, and the increase in instances of 
minority classes using the SMOTE sampling method 
was subsequently performed on the prepared data. 

In this paper, the ESN model was trained on a 
prepared dataset with the following parameters: 
number of neurons = 1000; leak rate = 1.0; spectral 
radius = 1.3; ridge = 1e-1. 

When predicting the trained model, the 
following metric values were obtained: Recall = 
0.3795, Precision = 0.3795, F1-score = 0.3795, PR-
AUC = 0.360, ROC-AUC = 0.535. Fig. 7 demonstrates 
the confusion matrix for the prediction results of 
this model in the test sample. 
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Fig. 7. Confusion matrix for Tomek Links + SMOTE + 

ESN model prediction results 

Thanks to a combination of methods for 
changing the initial sample, namely the Tomek Links 
+ SMOTE sequence + the random sample reduction 
method built into the classifier, it was possible to 
achieve results that surpass the original proposed 
solution for the data set under study. There is a 
noticeable improvement in the numerical values of 
all the considered metrics relative to the previously 
presented solutions. However, at the same time, 
the confusion matrix illustrates the continued 
imbalance in data forecasting, still in favour of the 
majority class. 

 
3.7 Architecture of the ResNet Convolutional 

Network 

 
The architecture of the ResNet convolutional 

neural network is well known in the field of image 
processing. Meanwhile, Gorishniy et al. [28] 
reported that such an architecture can be an 
effective basic model for solving the problem of 
processing tabular data. 

The main advantage of this architecture is the 
use of Residual Blocks, which avoid the problem of 
a decaying gradient inherent in many deep neural 
networks [29]. The residual block enables enhanced 
feature extraction, improved performance, and the 
transfer of information through deep neural 
network connections, thereby facilitating the 
construction of deeper networks. 

Unlike previous solutions, this method does not 
employ methods for reducing or increasing the 
sample, as it works by representing data in a hidden 
space. Even under these conditions, the results 
were comparable to the previous solutions 
considered. 

In this paper, the ResNet model was trained on a 
prepared dataset with the following parameters: 
optimizer — Adam; learning rate = 3e-4; batch size 
= 64; epochs = 200. 

When predicting the trained model, the 
following metric values were obtained: Recall = 
0.343, Precision = 0.361, F1-score = 0.279, PR-AUC 
= 0.438, ROC-AUC = 0.619. Fig. 8 demonstrates the 
confusion matrix for the prediction results of this 
model in the test sample. 

 

Fig. 8. Confusion matrix for ResNet-34 model 

prediction results 

3.8 Conditional Variational Autoencoder (CVAE) + 
Fuzzy Logic Classifier Layer (FuzzyLayer) 

 
The solution combination presented in [30] 

includes the use of a Variational Auto Encoder (VAE) 
and a Fuzzy Logic Layer (Fuzzy Layer). Variational 
Autoencoders are one of the most popular 
generative networks for studying data 
representation and use. Unlike traditional 
Autoencoders, they represent source data in a small 
latent space, which makes it possible to identify 
additional hidden characteristics of 
multidimensional data. Fuzzy logic systems, in turn, 
are excellent tools for data interpretability due to 
their structure based on specific rules and 
assumptions [30]. 

Bölat and Kumbasar [30] proposed an integrated 
framework that combines deep learning with fuzzy 
logic by first employing a Variational Autoencoder 
(VAE) to represent multidimensional data in a latent 
space for extracting semantic features. The latent 
space is then clustered using a fuzzy logic system to 
generate fuzzy sets, which serve as the foundation 
for building a fuzzy classifier. This classifier is 
subsequently trained using standard deep learning 
techniques to enhance classification performance. 
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The proposed approach was evaluated on the 
MNIST dataset of handwritten digits, where it 
achieved satisfactory results, demonstrating the 
effectiveness of combining VAEs, fuzzy clustering, 
and deep learning-based classification within a 
unified structure. 

For this work, the solution was adapted to 
process tabular data. In the solution structure, the 
Variational Autoencoder was replaced with a 
Conditional Variational Autoencoder, since it 
additionally accepts a class label as input. 

In this paper, the CVAE + FuzzyLayer model was 
trained on a prepared dataset with the following 
parameters: optimizer — Adam; learning rate = 3e-
4; batch size = 150; epochs = 350. 

When predicting the trained model, the 
following metric values were obtained: Recall = 
0.355, Precision = 0.355, F1-score = 0.355, PR-AUC 
= 0.421, ROC-AUC = 0.6025. Fig. 9 demonstrates the 
confusion matrix for the prediction results of this 
model in the test sample. 

Unlike previous solutions, the methods of 
reducing and increasing the sample were not used, 
since the process of presenting data in a latent 
space implements this process during training. Even 
under these conditions, the results were 
comparable to the previous solutions considered.  

 

Fig. 9. Confusion matrix for CVAE + FuzzyLayer model 

prediction results 

4. RESULTS AND DISCUSSION 
 

Table 5 presents the results of experiments 
conducted on the original dataset using various 
models, along with the initial solution [23] provided 
alongside the dataset. 

It was decided not to consider the ResNet neural 
network model, since its intended use is image 

processing, which may cause additional difficulties 
when implemented in real production. At the same 
time, its training takes the most computing time 
and resources. 

Based on the presented table, it was concluded 
that all solutions show approximately the same 
results, not exceeding an average of 50%. Among all 
the solutions, ESN and CVAE+FuzzyLayer methods 
proved to be the best strategies, although the last 
of these solutions, as mentioned earlier, does not 
use sampling modification methods to eliminate 
data imbalances and produce results comparable to 
solutions that, in turn, use these methods. 
However, all solutions demonstrate a serious bias in 
the prediction results in favour of the majority class, 
which is clearly visible in the error matrices shown 
in Figure 3-9. The best solution based on this metric 
is the CatBoost model using the Tomek Links and 
SMOTE sampling methods. This highlights the 
importance of integrating data balancing 
techniques with robust classifiers to achieve more 
reliable and unbiased predictions. 
 
Table 5. Results for different strategies 

Strategies Recall 
Preci
sion 

F1-
score 

PR-
AUC 

ROC-
AUC 

GaussianNB 0.333 0.198 0.249 0.404 0.5 

Logistic 
regression 

0.356 0.345 0.293 0.405 0.503 

CatBoost 0.355 0.351 0.322 0.407 0.506 

RUSBoost 0.355 0.359 0.354 0.412 0.512 

ESN 0.380 0.380 0.380 0.360 0.535 

ResNet34 0.343 0.361 0.279 0.438 0.619 

CVAE+Fuzzy
Layer 

0.355 0.356 0.355 0.421 0.603 

 
In addition, the Friedman test and subsequent 

studies using the Nemenyi test were used to verify 
statistical significance, as described by Demšar [31]. 
To do this, 15 experiments on the models under 
consideration using cross-validation were 
additionally performed. Recall was used as a metric 
for evaluating model results. Table 6 demonstrates 
the results of 15 new experiments on the original 
dataset using various models. In all required 
calculations, the value 0.05 was used as the 
threshold p-value. 

According to the Friedman test, the null 
hypothesis was rejected, indicating that all 
algorithms are not equivalent. Next, a post-hoc test 
was performed using the Nemenyi test. According 
to this test, the critical difference between the 
classifiers should be 1.575. Two groups of 
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algorithms were identified: Logistic regression and 
CatBoost, and RUSBoost and CVAE + FuzzyLayer 
model – have a clear difference between each 
other. At the same time, it is not entirely clear which 
group the ESN algorithm consistently belongs to. 

Obviously, such solutions cannot be used in real 
production with their current configuration, and 
therefore, a new challenge arises to develop new 

methods capable of solving the task of predicting 
the failure of gas turbine equipment with the 
problems inherent in the dataset under study and 
many other datasets based on real indications of 
industrial operation of a gas turbine. This highlights 
the urgent need for robust, scalable, and 
generalizable predictive models that can be reliably 
deployed in practical industrial environments.

 
Table 6. Results for 15 new experiments using cross-validation 

No. Logistic regression CatBoost RUSBoost ESN CVAE + Fuzzy 

1 0.305 (5) 0.3485 (4) 0.465 (2) 0.394 (3) 0.592 (1) 

2 0.3045 (4) 0.3545 (3) 0.4585 (1) 0.3925 (2) 0.1 (5) 

3 0.3255 (5) 0.364 (4) 0.4595 (1) 0.4025 (3) 0.458 (2) 

4 0.3255 (5) 0.358 (4) 0.459 (2) 0.38 (3) 0.596 (1) 

5 0.3035 (4) 0.3535 (3) 0.4595 (1) 0.399 (2) 0.2275 (5) 

6 0.303 (5) 0.3585 (4) 0.4605 (2) 0.4015 (3) 0.484 (1) 

7 0.3115 (5) 0.367 (4) 0.458 (2) 0.3945 (3) 0.5105 (1) 

8 0.3315 (4) 0.3725 (3) 0.4675 (1) 0.4005 (2) 0.1295 (5) 

9 0.31 (5) 0.355 (4) 0.4695 (2) 0.376 (3) 0.573 (1) 

10 0.2995 (5) 0.344 (4) 0.487 (2) 0.4005 (3) 0.538 (1) 

11 0.3205 (5) 0.3565 (4) 0.4675 (1) 0.3985 (2) 0.375 (3) 

12 0.3325 (5) 0.3545 (4) 0.456 (2) 0.3895 (3) 0.573 (1) 

13 0.3205 (5) 0.38 (4) 0.459 (1) 0.4005 (3) 0.4125 (2) 

14 0.295 (5) 0.3805 (4) 0.4605 (2) 0.385 (3) 0.544 (1) 

15 0.3135 (5) 0.3425 (4) 0.4645 (2) 0.381 (3) 0.5385 (1) 

Avg. 4,8 3,8 1,6 2,73 2,07 

 
5. CONCLUSION 
 

During experiments on the initial dataset using 
various models, it was concluded that the 
simultaneous problems of data imbalance and class 
overlap had a substantial effect on the final 
prediction values and, as a result, on the overall 
effectiveness of the models in solving the problem 
of predicting the failure of gas turbine equipment. 
The initial solution proposed, along with the dataset 
considered in the paper, does not address its 
specified problems and completely overlooks the 
two minor classes, which, despite a generally 
satisfactory accuracy indicator, suggest poor model 
efficiency. The remaining solutions, on the contrary, 
show approximately similar results for other 
metrics, but they take into account all available 
classes in their forecasts. However, their efficiency 
and accuracy are still not at a high enough level, 
indicating the need for a more comprehensive and 
in-depth approach to solving the problem using the 
dataset in question. It is necessary to develop new 
methods and algorithms for the successful 
prediction of gas turbine engine failure based on 
real data, with possible problems of data imbalance 
and class overlap. 

Further research will focus on advanced data 
preprocessing techniques to address issues of 
separability and imbalance, as well as exploring 
hybrid approaches that combine different machine 
learning methods for predicting gas turbine failures. 
Additionally, evaluating the computational cost and 
model complexity, which were not addressed in this 
study, will be a priority. Further research will be 
based on alternative data balancing methodologies 
to compare their effectiveness and identify the 
most suitable solution. 
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