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Abstract:  
In the field of modern optimization, heuristic algorithms are widely used in 
various optimization tasks due to their excellent performance on complex 
problems. This paper proposes a new heuristic optimization algorithm, the 
Advanced Ceramic Process Heuristic Optimization Algorithm (ACP-MO). 
Inspired by the ceramic machining process, the algorithm uses forming 
operations and reverse design repair strategies to simulate the dynamic 
process in ceramic machining. By optimizing 10 typical test functions, the 
experimental results show that ACP-MO outperforms multiple common 
algorithms in terms of optimization accuracy. ACP-MO refers to the three-
stage optimization process of the advanced ceramic manufacturing process, 
which includes the forming stage, sintering stage and repair stage. These 
three stages correspond to exploration, quality assessment and local 
refinement, respectively. A new integration of temperature control 
convergence, Gaussian perturbation and inverse design heuristic correction 
mechanism is introduced, which provides a new perspective for the design 
and development of meta-heuristic algorithms. 
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1. INTRODUCTION 
 
Global optimization problems are widely found 

in many fields such as machine learning, 
engineering design, data analysis and so on [1-8]. 
These problems are generally complex, require 
comprehensive consideration of multiple factors, 
and usually include multiple local optimal solutions 
[9-15]. Traditional optimization techniques and 
methods find it difficult to find the global optimal 
solution. In order to meet these challenges, 
heuristic algorithms have gradually become a 
powerful tool for solving these complex 
optimization problems. Heuristic algorithms have 
different characteristics and significant advantages 
compared with traditional optimization techniques 
such as gradient descent. Gradient descent is 
usually limited to local optimality, so its effect is 
not ideal, especially when dealing with complex 
nonlinear or multi-peak functions [16-22]. In order 

to deal with this problem, a number of meta-
heuristic algorithms have emerged, including 
differential evolution (DE), particle swarm 
optimization (PSO) and genetic algorithm (GA). 
These related algorithms can effectively avoid 
falling into local optimality by simulating the 
evolution process of social and natural systems, 
and can achieve better results in global 
optimization problems [23-26]. 

Although many heuristic optimization 
algorithms have achieved remarkable results, 
further improving the efficiency of these 
algorithms to solve more complex optimization 
problems in practical applications remains a 
pressing challenge. Especially for problems with 
multiple optimization objectives, complex 
constraints, and a large solution space, existing 
algorithms still face the challenge of how to 
balance search breadth and search accuracy [27-
33]. To this end, this paper proposes a new 
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heuristic optimization algorithm, the heuristic 
optimization algorithm based on advanced ceramic 
processes (ACP-MO). The algorithm uses the 
operating principles of the "forming", "sintering", 
and "repairing" stages in the ceramic 
manufacturing process to simulate the gradual 
improvement process in the ceramic processing 
process and guide the search process. Specifically, 
ACP-MO gradually optimizes the solution quality 
by simulating the three key stages of ceramic 
manufacturing, aiming to improve the overall 
search efficiency and performance of the algorithm. 

The design of the ACP-MO algorithm is inspired 
by the process of continuous optimization and 
improvement of ceramic shapes. In actual ceramic 
manufacturing, the forming stage is crucial for the 
initial formation of the shape, the sintering stage is 
crucial for ensuring the stability and structural 
strength of the shape, and the repair stage focuses 
on adjusting and optimizing the shape and 
eliminating possible defects. In the optimization 
problem, these three stages represent different 
stages of the search process: initial exploration, 
evaluation, and revision. This analogy enables ACP-
MO to simulate an efficient optimization process 
and effectively avoid common local optimal 
problems. 

This paper first introduces the design idea and 
algorithm structure of ACP-MO, and then 
compares ACP-MO with other traditional 
optimization algorithms (such as genetic algorithm 
and particle swarm optimization algorithm) 
through experiments to verify the advantages and 
potential applications of ACP-MO in solving 
complex optimization problems. The experimental 
results show that ACP-MO exhibits strong global 
search ability and convergence speed in multiple 
standard optimization problems, proving its 
effectiveness in practical applications. 
 
1.1 Contributions 

 
The main contributions of this paper are 

summarized as follows: 
A novel metaheuristic algorithm named ACP-

MO (Advanced Ceramic Process Metaheuristic 
Optimization) is proposed, which is inspired by the 
forming, sintering and repairing stages of the 
ceramic manufacturing process. 

Each stage of ACP-MO is designed to represent 
a key link in the optimization process: initial 
exploration, solution evaluation and defect 
correction. 

Extensive experiments are conducted to 
compare ACP-MO with several well-established 
algorithms, demonstrating its superior 
performance on a series of benchmark 
optimization problems. 

The practical applicability of ACP-MO is further 
verified through a case study of pressure vessel 
design, demonstrating its potential in engineering 
optimization tasks. 

 
2. DESIGN OF ACP-MO ALGORITHM 

 
2.1 Algorithm Overview 

 
The design of ACP-MO (Advanced Ceramic 

Process Heuristic Metaheuristic Optimization) 
algorithm is inspired by ceramic processing 
technology. The goal is to guide the search process 
by simulating the forming, sintering and repairing 
process of ceramics, and finally optimize the 
objective function. ACP-MO mainly includes three 
stages: forming stage, sintering stage and repairing 
stage, and each stage plays a different role in the 
optimization process. 

Forming operator: In the ceramic 
manufacturing process, the forming stage is to 
establish the preliminary shape of the object by 
forming. A certain amount of Gaussian noise is 
introduced through the shaping operator to 
expand the search range. 

Sintering is the process of heating ceramics to 
high temperatures to stabilize the ceramic 
structure. In the optimization process, the 
sintering operation is used to calculate the 
objective function value and evaluate the quality 
of the current solution. Similar to the quality 
evaluation after ceramic sintering, the sintering 
operation can effectively select relatively high-
quality solutions and promote the convergence of 
the algorithm.. 

Reverse design repair: The repair stage is the 
process of correcting and adjusting the shape 
during ceramic processing. Correspondingly, in the 
optimization process, the repair operation 
optimizes the existing solution by reverse 
engineering the repair strategy. 

 
2.2  Algorithm Flow 

 
Initialization: A set of initial solutions is 

randomly generated in the solution space. 
Temperature update: The algorithm will adjust 

the temperature value after each iteration. 
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Formulation phase: Generate new solutions 
through formative operations and evaluate their 
applicability. The goal of the prototyping phase is 
to explore the solution space and ensure the 
diversity and breadth of solutions. 

Sintering phase: Calculate the objective 
function value and evaluate the quality of the 
solution. The goal of the sintering phase is to select 
high-quality solutions and guide the search 
direction through feedback from the objective 
function. 

Repair phase: The current solution will be fixed 
if necessary. 

Iteration termination: When the stopping 
condition is met, the optimal solution will be 
returned. 

 
2.3  Algorithm Parameters 

 
The main parameters of the ACP-MO algorithm 

include: 

• Initial temperature: 1.0; 

• Problem dimension: 10; 

• Population size: 100; 

• Maximum number of iterations: 1000. 
 

Stopping criteria: max_iter was set to 100. 
Initialization range: The initial population was 

randomly generated uniformly in the range of -
5.12 to 5.12 of each decision variable dimension. 

Boundary treatment: No explicit boundary 
constraints or corrections were imposed during the 
optimization process. 

Temperature parameter and decay: The initial 
temperature was set to 1.0. The temperature was 
linearly decreased from 1.0 during the iteration 
process until it reached 0 in the last iteration of the 
experiment, so as to gradually reduce the 
randomness. 

 
3. EXPERIMENTAL SETUP AND RESULTS 
 
3.1 Test Function 

 
To evaluate the performance of the proposed 

ACP-MO algorithm, ten classic benchmark 
functions are used. These test functions vary in 
terms of landscape complexity, modality, 
separability, and shape characteristics. They are 
widely used for algorithm validation in the field of 
global optimization. 

The selected benchmark functions are as 
follows: 

• Rastrigin function: a non-convex multimodal 
function with many regularly distributed 
local minima, which makes it difficult for the 
algorithm to find the global minimum. 

• Spherical function: A simple, unimodal, 
convex function. 

• Rosenbrock function: A unimodal function. 

• Ackley function: A multimodal function. 

• Griewank function: A complex function with 
many wide local minima.  

• Levi function: a multimodal function known 
for its periodicity and sharp local minima 
around the global optimum. 

• Schwefel function: characterized by 
deceptive landscapes and global optima far 
from the origin, often used to evaluate 
global exploration intensity. 

• Rastrigin_2 function: a variant of the original 
Rastrigin function with altered amplitudes, 
used to test robustness to parameter 
changes. 

• Zakharov function: a unimodal function with 
a quadratic kernel and complex internal 
structure. 

• Michalewicz function: a highly multimodal 
and non-separable function. 

 
3.2 Algorithm Comparison 

 
To comprehensively evaluate the performance 

of ACP-MO, we compare it with 11 other currently 
popular and advanced algorithms. 

Algorithm ACP-MO (Advanced Ceramic Process-
Inspired Metaheuristic Optimization) pseudo code: 
Input: 

    population_size : The number of candidate 
solutions in the population 

    dimension       : The number of variables 
(dimensions) for each solution 

    max_iter        : Maximum number of iterations 
    temperature     : Initial temperature 

parameter 
    func            : The objective function to be 

minimized 
 

Output: 
    best_solution   : The best solution found 
    best_fitness    : The fitness value of the best 

solution 
Begin 
    Initialize the population with a set of 

candidate solutions: 
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        For each candidate solution i in 
[1..population_size]: 

            Randomly initialize a solution x_i in the 
search space 

    Initialize best_solution to None. 
    Initialize best_fit to infinity 
 

    For iterations in [1..max_iter]: 
    Initialize new_population to an empty list 
 

    For each candidate solution x in the 
population: 

            // Formation phase: Generate new 
candidate solutions by perturbing the current 
solution 

            new_solution = FormingOperator(x) 
                where FormingOperator(x): 
                    Add small Gaussian noise to x: 
                    new_solution = x + 

Gaussian_noise(mean=0, std=0.1) 
 

            // Firing phase: Evaluate new candidate 
solution using the objective function 

            fitness = func(new_solution) 
 

            // Update global best if new solution is 
better 

            If fitness < best_fitness then 

                best_fitness = fitness 
                best_solution = new_solution 
            Add new_solution to new_population 
 

        Update population with new_population 
 

        // Update temperature according to 
cooling schedule 

        temperature = 
UpdateTemperature(iteration) 

            where UpdateTemperature(iter): 
                temperature = initial_temperature * (1 

- iter / max_iter) 
 

    End For 
 

    Return best_solution, best_fitness 
End 

 
3.3 Experimental Results 

 
The experiment was implemented using 

Python's numpy library, and all algorithms were 
run independently 100 times to ensure the stability 
of the results. The results of each experiment 
include the fitness value and running time of the 
optimal solution obtained by optimization. 

The experimental results are shown in Table 1. 

Table 1. The results of the comparative experiment 

Function Algorithm Mean ± Std Dev Mean ± 95% Confidence Interval 

rastrigin 
 
 
 
 
 
 
 
 

ACPMO 86.4655 ± 11.3983 86.4655 ± 2.2453 

GA 97.8987 ± 13.8532 97.8987 ± 2.7289 

PSO 13.6255 ± 6.6279 13.6255 ± 1.3056 

DE 152.5864 ± 22.5644 152.5864 ± 4.4449 

CS 88.2943 ± 12.0568 88.2943 ± 2.3750 

FA 122.8845 ± 13.9405 122.8845 ± 2.7461 

ACO 100.2725 ± 11.7934 100.2725 ± 2.3232 

SA 112.2327 ± 21.1583 112.2327 ± 4.1679 

WOA 0.6703 ± 3.7664 0.6703 ± 0.7419 

COA 51.0133 ± 10.5286 51.0133 ± 2.0740 

AOA 41.6848 ± 12.8873 41.6848 ± 2.5386 

PDO 27.2683 ± 10.0555 27.2683 ± 1.9808 

 
 

sphere  
 
 

 

ACPMO 33.7993 ± 8.4409 33.7993 ± 1.6628 

GA 25.0533 ± 7.8427 25.0533 ± 1.5449 

PSO 0.0000 ± 0.0000 0.0000 ± 0.0000 

DE 64.3443 ± 18.6056 64.3443 ± 3.6651 

CS 32.5788 ± 9.0981 32.5788 ± 1.7922 

FA 42.5631 ± 9.3081 42.5631 ± 1.8336 
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Table 1. The results of the comparative experiment - Continued from the previous page 

Function Algorithm Mean ± Std Dev Mean ± 95% Confidence Interval 

sphere 
 
 
 

ACO 39.6525 ± 8.9126 39.6525 ± 1.7557 

SA 14.1792 ± 8.6592 14.1792 ± 1.7058 

WOA 0.0000 ± 0.0000 0.0000 ± 0.0000 

COA 2.6719 ± 1.5265 2.6719 ± 0.3007 

AOA 0.0035 ± 0.0019 0.0035 ± 0.0004 

PDO 0.0180 ± 0.0043 0.0180 ± 0.0009 

rosenbrock 
 
 
 
 
 
 
 
 
 
 
 

ACPMO 21090.1981 ± 9295.3741 21090.1981 ± 1831.0717 

GA 11342.8878 ± 7012.8061 11342.8878 ± 1381.4345 

PSO 11.2479 ± 19.6460 11.2479 ± 3.8700 

DE 76916.3216 ± 41635.8572 76916.3216 ± 8201.7397 

CS 22615.4790 ± 9058.3410 22615.4790 ± 1784.3791 

FA 35312.9445 ± 15749.6698 35312.9445 ± 3102.4867 

ACO 29846.1386 ± 13615.5378 29846.1386 ± 2682.0896 

SA 819.9035 ± 954.1550 819.9035 ± 187.9565 

WOA 6.4594 ± 3.6666 6.4594 ± 0.7223 

COA 349.5411 ± 248.1698 349.5411 ± 48.8863 

AOA 35.7324 ± 48.3226 35.7324 ± 9.5189 

PDO 12.8753 ± 15.1290 12.8753 ± 2.9802 

ackley  
 
 
 
 
 
 
 
 

ACPMO 12.4996 ± 1.0128 12.4996 ± 0.1995 

GA 11.4539 ± 1.1405 11.4539 ± 0.2247 

PSO 0.0075 ± 0.0190 0.0075 ± 0.0037 

DE 14.9735 ± 1.0025 14.9735 ± 0.1975 

CS 12.7398 ± 0.8185 12.7398 ± 0.1612 

FA 13.3705 ± 0.9728 13.3705 ± 0.1916 

ACO 13.0506 ± 0.9104 13.0506 ± 0.1793 

SA 13.8263 ± 1.5412 13.8263 ± 0.3036 

WOA 0.0000 ± 0.0000 0.0000 ± 0.0000 

COA 5.6129 ± 0.9802 5.6129 ± 0.1931 

AOA 6.7201 ± 4.4866 6.7201 ± 0.8838 

PDO 1.2437 ± 1.8693 1.2437 ± 0.3682 

griewank 
                
 
 
 
 
 
 
 
 

 

ACPMO 0.9094 ± 0.0808 0.9094 ± 0.0159 

GA 0.8335 ± 0.1125 0.8335 ± 0.0222 

PSO 0.0162 ± 0.0129 0.0162 ± 0.0025 

DE 0.9384 ± 0.0688 0.9384 ± 0.0135 

CS 0.8936 ± 0.0916 0.8936 ± 0.0180 

FA 0.9767 ± 0.0457 0.9767 ± 0.0090 

ACO 0.9584 ± 0.0513 0.9584 ± 0.0101 

SA 0.9764 ± 0.0494 0.9764 ± 0.0097 

WOA 0.0441 ± 0.1094 0.0441 ± 0.0216 

COA 0.3205 ± 0.1730 0.3205 ± 0.0341 

AOA 0.1829 ± 0.2098 0.1829 ± 0.0413 

PDO 0.0610 ± 0.1402 0.0610 ± 0.0276 

levi 
 

ACPMO 79.9508 ± 25.5743 79.9508 ± 5.0378 

GA 91.7153 ± 34.9930 91.7153 ± 6.8932 
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Table 1. The results of the comparative experiment - Continued from the previous page 

Function Algorithm Mean ± Std Dev Mean ± 95% Confidence Interval 

levi 
 
 
 
 
 
 

PSO 1.3096 ± 3.1159 1.3096 ± 0.6138 

DE 265.8138 ± 78.7735 265.8138 ± 15.5174 

CS 80.1594 ± 21.1058 80.1594 ± 4.1576 

FA 165.8410 ± 52.3906 165.8410 ± 10.3203 

ACO 115.9906 ± 35.0722 115.9906 ± 6.9088 

SA 174.5762 ± 97.3403 174.5762 ± 19.1748 

WOA 4.5970 ± 14.5701 4.5970 ± 2.8701 

COA 19.1024 ± 10.3272 19.1024 ± 2.0343 

AOA 34.2805 ± 13.7312 34.2805 ± 2.7049 

PDO 18.2184 ± 12.4817 18.2184 ± 2.4587 

schwefel 
 
 
 
 
 
 
 
  

ACPMO 4170.8531 ± 3.7000 4170.8531 ± 0.7288 

GA 4166.5143 ± 3.4176 4166.5143 ± 0.6732 

PSO -2779114355.6660 ± 23113470464.4036 -2779114355.6660 ± 4553062724.2861 

DE -192286586780258272.0000 ± 150431269659881408.0000 -192286586780258272.0000 ± 29633066462704772.0000 

CS 4170.7259 ± 3.9700 4170.7259 ± 0.7820 

FA 4172.8632 ± 3.9425 4172.8632 ± 0.7766 

ACO 4172.3426 ± 3.8004 4172.3426 ± 0.7486 

SA 4177.3713 ± 7.1851 4177.3713 ± 1.4154 

WOA 4150.4047 ± 0.0000 4150.4047 ± 0.0000 

COA 4172.5049 ± 4.2253 4172.5049 ± 0.8323 

AOA 4150.4399 ± 0.1305 4150.4399 ± 0.0257 

PDO 4151.0973 ± 1.1705 4151.0973 ± 0.2306 

rastrigin_2 
 
 
 
 
 
 
 
 

ACPMO 63.7913 ± 8.9096 63.7913 ± 1.7551 

GA 65.1479 ± 10.5524 65.1479 ± 2.0787 

PSO 7.9541 ± 3.4311 7.9541 ± 0.6759 

DE 115.9499 ± 20.7608 115.9499 ± 4.0896 

CS 64.8413 ± 10.2534 64.8413 ± 2.0198 

FA 84.0274 ± 10.4621 84.0274 ± 2.0609 

ACO 73.3170 ± 10.4093 73.3170 ± 2.0505 

SA 75.2839 ± 17.6754 75.2839 ± 3.4818 

WOA 0.0467 ± 0.4651 0.0467 ± 0.0916 

COA 29.8607 ± 5.9510 29.8607 ± 1.1723 

AOA 32.8742 ± 10.6803 32.8742 ± 2.1039 

PDO 17.6605 ± 7.4396 17.6605 ± 1.4655 

zakharov 
 
 
 

 
 

 

ACPMO 48.9143 ± 13.3393 48.9143 ± 2.6277 

GA 37.3047 ± 12.2531 37.3047 ± 2.4137 

PSO -0.2444 ± 0.0061 -0.2444 ± 0.0012 

DE 118.2509 ± 37.4678 118.2509 ± 7.3807 

CS 48.3844 ± 13.1797 48.3844 ± 2.5962 

FA 65.5696 ± 17.0068 65.5696 ± 3.3501 

ACO 59.9574 ± 15.9248 59.9574 ± 3.1370 

SA 34.4705 ± 15.6941 34.4705 ± 3.0915 

WOA 5.8819 ± 7.1026 5.8819 ± 1.3991 
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Table 1. The results of the comparative experiment - Continued from the previous page 

Function Algorithm Mean ± Std Dev Mean ± 95% Confidence Interval 

zakharov 
 

 

COA 4.9786 ± 2.4379 4.9786 ± 0.4802 

AOA -0.1914 ± 0.0360 -0.1914 ± 0.0071 

PDO -0.2079 ± 0.0125 -0.2079 ± 0.0025 

 
 
 
 
 
 

michalewicz 
 

 
 
 
 
 
 
 

ACPMO -3.2183 ± 0.4257 -3.2183 ± 0.0838 

GA -2.5217 ± 0.5097 -2.5217 ± 0.1004 

PSO -6.7433 ± 1.0354 -6.7433 ± 0.2040 

DE -3.1439 ± 0.2948 -3.1439 ± 0.0581 

CS -3.1961 ± 0.3714 -3.1961 ± 0.0732 

FA -1.7433 ± 0.4659 -1.7433 ± 0.0918 

ACO -2.7720 ± 0.4296 -2.7720 ± 0.0846 

SA -2.0781 ± 0.4547 -2.0781 ± 0.0896 

WOA -4.5682 ± 0.8088 -4.5682 ± 0.1593 

COA -2.7546 ± 0.5559 -2.7546 ± 0.1095 

AOA -4.4298 ± 0.7447 -4.4298 ± 0.1467 

PDO -4.0847 ± 0.7442 -4.0847 ± 0.1466 

 
 
 
 
 
 

rastrigin 
 
 
 
 
 
 
 
 
 

ACPMO 86.7949 ± 11.1968 86.7949 ± 2.2056 

GA 94.9736 ± 14.1927 94.9736 ± 2.7958 

PSO 14.6354 ± 6.4821 14.6354 ± 1.2769 

DE 155.4549 ± 25.1166 155.4549 ± 4.9476 

CS 85.9735 ± 11.3751 85.9735 ± 2.2408 

FA 121.7564 ± 13.8163 121.7564 ± 2.7216 

ACO 98.4340 ± 14.6820 98.4340 ± 2.8922 

SA 115.4560 ± 20.2086 115.4560 ± 3.9808 

WOA 0.2626 ± 1.5421 0.2626 ± 0.3038 

COA 51.8494 ± 9.0452 51.8494 ± 1.7818 

AOA 41.4481 ± 12.3277 41.4481 ± 2.4284 

PDO 30.0356 ± 11.1521 30.0356 ± 2.1968 

sphere 
 
 
 
 
 
 
 
 

ACPMO 33.4989 ± 9.4564 33.4989 ± 1.8628 

GA 25.4132 ± 7.4166 25.4132 ± 1.4610 

PSO 0.0000 ± 0.0000 0.0000 ± 0.0000 

DE 66.9688 ± 18.4355 66.9688 ± 3.6316 

CS 33.6340 ± 8.8043 33.6340 ± 1.7343 

FA 40.3424 ± 9.4646 40.3424 ± 1.8644 

ACO 38.2151 ± 7.7863 38.2151 ± 1.5338 

SA 15.4574 ± 7.7689 15.4574 ± 1.5304 

WOA 0.0000 ± 0.0000 0.0000 ± 0.0000 

COA 2.8030 ± 1.6407 2.8030 ± 0.3232 

AOA 0.0034 ± 0.0020 0.0034 ± 0.0004 

PDO 0.0174 ± 0.0047 0.0174 ± 0.0009 

rosenbrock 
 
 

 
 

ACPMO 21307.8630 ± 11828.0271 21307.8630 ± 2329.9724 

GA 12508.9156 ± 7942.4216 12508.9156 ± 1564.5571 

PSO 6.8526 ± 7.1621 6.8526 ± 1.4108 

DE 71685.1890 ± 40999.7700 71685.1890 ± 8076.4386 

CS 20880.1820 ± 9951.7468 20880.1820 ± 1960.3688 

FA 30679.9948 ± 13324.0769 30679.9948 ± 2624.6754 
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Table 1. The results of the comparative experiment - Continued from the previous page 

Function Algorithm Mean ± Std Dev Mean ± 95% Confidence Interval 

rosenbrock 
 
 
 
 
 

ACO 27903.0992 ± 12406.3221 27903.0992 ± 2443.8893 

SA 759.5879 ± 816.7001 759.5879 ± 160.8796 

WOA 6.8500 ± 3.4561 6.8500 ± 0.6808 

COA 381.5226 ± 346.1156 381.5226 ± 68.1804 

AOA 39.6364 ± 59.5799 39.6364 ± 11.7365 

PDO 12.9904 ± 15.1657 12.9904 ± 2.9874 

ackley 
 
 
 
 
 
 
 
 
 

ACPMO 12.6001 ± 1.1988 12.6001 ± 0.2361 

GA 11.5313 ± 1.2517 11.5313 ± 0.2466 

PSO 0.0064 ± 0.0117 0.0064 ± 0.0023 

DE 15.1358 ± 1.2496 15.1358 ± 0.2462 

CS 12.5042 ± 0.8926 12.5042 ± 0.1758 

FA 13.5719 ± 0.9084 13.5719 ± 0.1789 

ACO 13.0572 ± 0.9610 13.0572 ± 0.1893 

SA 13.8943 ± 1.2257 13.8943 ± 0.2414 

WOA 0.0000 ± 0.0000 0.0000 ± 0.0000 

COA 5.6237 ± 0.9185 5.6237 ± 0.1809 

AOA 6.3862 ± 4.7125 6.3862 ± 0.9283 

PDO 1.6685 ± 2.3138 1.6685 ± 0.4558 

griewank 
 
 
 
 
 
 

 

ACPMO 0.9008 ± 0.0974 0.9008 ± 0.0192 

GA 0.8267 ± 0.1114 0.8267 ± 0.0219 

PSO 0.0183 ± 0.0150 0.0183 ± 0.0030 

DE 0.9270 ± 0.0748 0.9270 ± 0.0147 

CS 0.8988 ± 0.0794 0.8988 ± 0.0156 

FA 0.9730 ± 0.0560 0.9730 ± 0.0110 

ACO 0.9551 ± 0.0724 0.9551 ± 0.0143 

SA 0.9738 ± 0.0541 0.9738 ± 0.0107 

WOA 0.0366 ± 0.1143 0.0366 ± 0.0225 

COA 0.2971 ± 0.1513 0.2971 ± 0.0298 

AOA 0.1923 ± 0.2316 0.1923 ± 0.0456 

PDO 0.0516 ± 0.1086 0.0516 ± 0.0214 

levi 
 
 
 
 
 
 

 

ACPMO 81.8170 ± 20.8095 81.8170 ± 4.0992 

GA 86.9475 ± 32.3448 86.9475 ± 6.3715 

PSO 1.0827 ± 2.2083 1.0827 ± 0.4350 

DE 267.4862 ± 93.7024 267.4862 ± 18.4582 

CS 79.6873 ± 23.3850 79.6873 ± 4.6065 

FA 164.8925 ± 55.4281 164.8925 ± 10.9186 

ACO 113.9457 ± 31.6074 113.9457 ± 6.2263 

SA 170.7262 ± 107.5502 170.7262 ± 21.1860 

WOA 3.4916 ± 9.1725 3.4916 ± 1.8069 

COA 18.6628 ± 10.3482 18.6628 ± 2.0385 

AOA 35.5675 ± 14.5070 35.5675 ± 2.8577 

PDO 16.7777 ± 12.4409 16.7777 ± 2.4507 

schwefel 
 

ACPMO 4170.8364 ± 3.8575 4170.8364 ± 0.7599 

GA 4166.8165 ± 3.6992 4166.8165 ± 0.7287 

PSO -928973351.8805 ± 4893085600.9090 -928973351.8805 ± 963876268.1939 
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Table 1. The results of the comparative experiment - Continued from the previous page 

Function Algorithm Mean ± Std Dev Mean ± 95% Confidence Interval 

schwefel 
 
 
 
 
 
 

 

DE -237951482127410080.0000 ± 267241637680526080.0000 -237951482127410080.0000 ± 52643238529423048.0000 

CS 4171.0737 ± 4.6600 4171.0737 ± 0.9180 

FA 4172.5008 ± 3.9066 4172.5008 ± 0.7695 

ACO 4172.3126 ± 3.4614 4172.3126 ± 0.6818 

SA 4176.4082 ± 7.2144 4176.4082 ± 1.4212 

WOA 4150.4047 ± 0.0000 4150.4047 ± 0.0000 

COA 4172.4963 ± 3.8941 4172.4963 ± 0.7671 

AOA 4150.4239 ± 0.0654 4150.4239 ± 0.0129 

PDO 4150.8576 ± 0.8781 4150.8576 ± 0.1730 

rastrigin_2 
 
 
 
 
 
 

 

ACPMO 64.4192 ± 9.7661 64.4192 ± 1.9238 

GA 67.9815 ± 11.4426 67.9815 ± 2.2540 

PSO 8.1674 ± 3.2995 8.1674 ± 0.6500 

DE 110.3010 ± 21.2996 110.3010 ± 4.1957 

CS 65.6289 ± 9.5079 65.6289 ± 1.8729 

FA 86.5715 ± 11.0435 86.5715 ± 2.1754 

ACO 73.7193 ± 10.3869 73.7193 ± 2.0461 

SA 74.0266 ± 15.8193 74.0266 ± 3.1162 

WOA 0.3973 ± 3.1421 0.3973 ± 0.6190 

COA 30.2326 ± 6.0375 30.2326 ± 1.1893 

AOA 32.2585 ± 10.0133 32.2585 ± 1.9725 

PDO 18.7699 ± 7.0407 18.7699 ± 1.3869 

zakharov 
 
 
 
 
 
 

 

ACPMO 48.6142 ± 12.0931 48.6142 ± 2.3822 

GA 34.9893 ± 11.6831 34.9893 ± 2.3014 

PSO -0.2228 ± 0.1879 -0.2228 ± 0.0370 

DE 122.5483 ± 49.0107 122.5483 ± 9.6545 

CS 46.9807 ± 14.4608 46.9807 ± 2.8486 

FA 69.9739 ± 21.0914 69.9739 ± 4.1547 

ACO 57.1238 ± 15.8450 57.1238 ± 3.1213 

SA 32.6433 ± 16.8206 32.6433 ± 3.3135 

WOA 5.1450 ± 7.4768 5.1450 ± 1.4728 

COA 5.2738 ± 2.9604 5.2738 ± 0.5832 

AOA -0.1987 ± 0.0324 -0.1987 ± 0.0064 

PDO -0.2120 ± 0.0122 -0.2120 ± 0.0024 

michalewicz 
 
 
 
 
 
 
 
 

ACPMO -3.1762 ± 0.3482 -3.1762 ± 0.0686 

GA -2.4670 ± 0.5309 -2.4670 ± 0.1046 

PSO -6.8799 ± 0.8434 -6.8799 ± 0.1661 

DE -3.1504 ± 0.3760 -3.1504 ± 0.0741 

CS -3.1737 ± 0.3547 -3.1737 ± 0.0699 

FA -1.8285 ± 0.5316 -1.8285 ± 0.1047 

ACO -2.8349 ± 0.4631 -2.8349 ± 0.0912 

SA -2.1126 ± 0.4938 -2.1126 ± 0.0973 

WOA -4.5026 ± 0.7278 -4.5026 ± 0.1434 

COA -2.7884 ± 0.5736 -2.7884 ± 0.1130 

AOA -4.5599 ± 0.8198 -4.5599 ± 0.1615 

PDO -3.9177 ± 0.7051 -3.9177 ± 0.1389 
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The code output images of this comparative 
experiment are as follows, including from Fig. 1 to 
Fig. 10. 

 

 
Fig. 1. Code output image 1 

 
Fig. 2. Code output image 2 

 
Fig. 3. Code output image 3 

 
Fig. 4. Code output image 4 

 
Fig. 5. Code output image 5 

 
Fig. 6. Code output image 6 

 
Fig. 7. Code output image 7 

 
Fig. 8. Code output image 8 

 
Fig. 9. Code output image 9 
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Fig. 10. Code output image 10 

In the analysis of experimental results on the 
provided test functions (Rastrigin, Sphere, 
Rosenbrock, Ackley, Griewank, Levi, Schwefel, 
Michalewicz, Rastrigin_2 and Zakharov), the 
ACPMO algorithm is compared with other baseline 
algorithms (GA, PSO, DE, CS, FA, ACO, SA, WOA, 
COA, AOA, PDO). According to the Friedman test, 
the results of all test functions show significant 
differences between the algorithms (p<0.05). The 
performance of the ACPMO algorithm relative to 
other algorithms is further analyzed by the 
Wilcoxon signed rank test. 

 
3.4 Advantages of the ACPMO Algorithm 
 

Robustness performance on specific problems: 
On the Rastrigin family of functions (Rastrigin and 
Rastrigin_2) and Levi functions, the mean and 
standard deviation of the ACPMO algorithm are 
better than those of multiple algorithms such as 
GA, DE, FA, ACO and SA, and there is no significant 
difference in performance with the CS algorithm. 
This shows that ACPMO shows good convergence 
stability and optimization accuracy when dealing 
with such multimodal or complex optimization 
problems. 

Strong competitiveness with other algorithms: 
In multiple test functions, the performance of the 
ACPMO algorithm is not statistically significantly 
different from that of the CS algorithm (e.g., on 
Rastrigin, Sphere, Rosenbrock, Ackley, Griewank, 
Levi, Rastrigin_2 and Zakharov functions, p>0.05), 
which shows that ACPMO can at least achieve the 
same optimization level as the CS algorithm on 
these problems. 

Surpassing traditional optimization algorithms: 
ACPMO's performance on most test functions is 
significantly better than traditional genetic 
algorithms (GA), differential evolution algorithms 
(DE), particle swarm optimization algorithms (PSO), 
ant colony optimization algorithms (ACO), 
simulated annealing algorithms (SA) and firefly 
algorithms (FA). This shows that ACPMO has 

stronger global search capabilities and 
convergence efficiency when solving these classic 
benchmark problems. 
 
3.5 Disadvantages of ACPMO Algorithm 
 

The convergence accuracy on some functions 
needs to be improved: 

• For Sphere function, WOA and PSO algorithms 
can reach an average value of 0, while COA, 
AOA and PDO can also reach an average value 

very close to 0 (such as COA: 2.6719 ± 1.5265, 

AOA: 0.0035 ± 0.0019, PDO: 0.0180 ± 0.0043). 
In comparison, the average value of ACPMO 

(33.7993 ± 8.4409) is significantly higher than 
these algorithms, indicating that the accuracy of 
ACPMO in converging to the global optimal 
solution on simple convex functions is not high. 

• On the Rosenbrock function, the average values 
of PSO, WOA, AOA and PDO are significantly 

lower than those of ACPMO (PSO: 11.2479 ± 

19.6460, WOA: 6.4594 ± 3.6666), while the 
average value of ACPMO is as high as 

21090.1981 ± 9295.3741, which indicates that 
ACPMO may have insufficient ability to jump 
out of the local optimum or slow convergence 
speed when processing such functions. 

• On the Ackley function, the performance of PSO, 
WOA, COA, AOA and PDO is significantly better 
than that of ACPMO, especially PSO and WOA 
can reach an average value close to 0, while the 

average value of ACPMO is still 12.4996 ±
1.0128, which indicates that ACPMO has 
limitations in its ability to find the best solution 
on functions with multiple local optimal 
solutions and flat gradients at the global 
optimal solution. 

• On the Griewank function, the performance of 
ACPMO is significantly worse than that of PSO, 
WOA, COA, AOA, and PDO. These algorithms 
can converge to a solution very close to the 
global optimal solution (0), while the average 

value of ACPMO is still 0.9094 ± 0.0808, which 
may reflect that ACPMO is prone to falling into 
local optimality when dealing with functions 
with a large number of periodic local optimal 
solutions. 

• On the Schwefel function, PSO, DE, WOA, AOA, 
and PDO can find very small or even negative 
average values, especially DE and PSO, whose 
average values reach the order of magnitude of 

−108 or −1017, indicating that they can find 
better solutions, while the average value of 
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ACPMO is around 4170, which indicates that 
ACPMO may not have sufficient global 
exploration ability when dealing with functions 
with large search spaces and complex terrains. 

• This shows that ACPMO performs well in 
dealing with multi-peak complex optimization 
scenarios, with high accuracy and robustness, 
but for some other functions, ACPMO does not 
outperform some other advanced algorithms, 
which shows that although ACPMO is effective, 
it may have difficulties in dealing with certain 
functions, especially when the gradient is not 
clear near the global optimal value, there are 
multiple local optimal values, and it is relatively 
flat. 
 

3.4 Hyperparameter Sensitivity Analysis 
 
The following is a sensitivity analysis of three 

key hyperparameters: population size, initial 
temperature, and standard deviation of repair 
noise. Each parameter was tested at five 
representative values, and each configuration was 
repeated 10 times. The mean and standard 
deviation of the best fitness value on the sphere 
function were recorded. The results are shown in 
Table 2. 

Table 2. Hyperparameter Sensitivity Analysis 

Experimental Results 

Hyperparameter Value 
Mean 

Fitness 
Standard 
Deviation 

Population Size 
 
 
 

10 186.290753 25.337726 

20 170.018293 30.411383 

30 164.57284 11.440118 

40 168.522009 18.014233 

50 160.053579 17.213331 

Initial 
Temperature 

 
 
 

0.1 169.749479 17.009741 

0.5 173.505146 21.92225 

1 169.067684 14.243932 

2 157.49695 16.749726 

5 157.790829 15.215504 

Repair Noise Std 
 
 

0.01 170.779603 13.864752 

0.05 169.148241 14.309225 

0.1 158.396924 22.467376 

0.2 170.062837 9.22232 

0.5 177.440203 14.766799 

 

The code output results of the Hyperparameter 
Sensitivity Analysis experiment are as follows, from 
Fig. 11 to Fig. 13. 

 

 

Fig. 11. Code output image 11 

 

Fig. 12. Code output image 12 

 

Fig. 13. Code output image 13 
 

The experimental results show that increasing 
the population size helps improve convergence 
performance, but the improvement tends to 
stabilize after the size exceeds 30. Higher 
temperatures (such as 2.0 or 5.0) are conducive to 
maintaining early exploration, thereby improving 
overall performance. In terms of repairing noise, 
the algorithm performs best when the standard 
deviation is 0.1, indicating that this value has 
achieved a good balance between perturbation 
and stability. 
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3.5 Ablation Study of the Effectiveness of ACP-MO 
Components 

 
In order to explore the respective contributions 

of forming, firing, and healing components in the 
proposed Advanced Ceramic Process Heuristic 
Metaheuristic Optimization (ACP-MO) algorithm, 
an ablation study was conducted by selectively 
enabling and disabling these components. Each 
configuration was run 10 times independently, and 
the mean and standard deviation of the best 
fitness values were recorded as follows, in Table 3: 

Table 3. Ablation study of the effectiveness of ACP-MO 

components: Experimental results 

Forming Firing Healing 
Mean 

Fitness 
Standard 
Deviation 

TRUE TRUE TRUE 157.594465 17.909813 

FALSE TRUE TRUE 171.358461 21.907328 

TRUE FALSE TRUE 179.610019 18.240737 

TRUE TRUE FALSE 167.650614 20.035624 

FALSE FALSE TRUE 174.095084 22.928411 

FALSE TRUE FALSE 169.00636 20.960632 

TRUE FALSE FALSE 182.132076 21.599297 

FALSE FALSE FALSE 177.679394 12.857532 

 
The code output results of the Ablation study of 

the effectiveness of ACP-MO components 
experiment are as follows, see Fig. 14. 

Experimental results show that disabling any 
component will lead to significant performance 
degradation. 

In the case of single-component disabling, the 
performance was the worst when the emission 
phase was disabled (179.61), highlighting the 
critical role of solution evaluation. The repair 
phase also plays an important role, as removing it 
drops the performance to 167.65. 

 

 
Fig. 14. Code output image 14 

Furthermore, the configuration with multiple 
components disabled shows a significant drop in 
performance, further verifying that each module 
contributes necessary functionality. In summary, 
this ablation study validates that the formation, 
emission, and repair modules are essential for the 
robustness and efficiency of the ACP-MO algorithm. 

 
3.6 Real-World Case Analysis: Pressure Vessel 

Design Problem 

 
In order to verify the applicability of the ACP-

MO algorithm in real-world engineering 
optimization problems, this paper selects the 
classic pressure vessel design problem as a test 
case. This problem is widely used in engineering 
design optimization research. The goal is to 
minimize the manufacturing cost of a cylindrical 
pressure vessel while satisfying a series of 
structural and volume constraints. 

The evaluation process of ACP-MO in this 
problem also covers the three stages of "forming", 
"firing" and "healing", corresponding to design 
exploration, performance evaluation and detail 
optimization. 

In the experiment, the population size is set to 
30, the maximum number of iterations is 100, and 
the initial temperature is 1.0. During the execution 
process, the algorithm successfully found a set of 
optimal design parameters that meet all 
constraints, and the corresponding manufacturing 
cost is the lowest. The optimization results are as 
follows: 

The optimal design variable values are: 

x₁ = 12.597, x₂ = 82.720, x₃ = 55.634, x₄ = 
152.085 

The corresponding minimum manufacturing 
cost is: 773126.042. 

This result verifies that ACP-MO has good 
performance and adaptability in dealing with 
complex, multi-constrained engineering 
optimization problems, and further supports its 
practical application potential in real-world tasks 
such as engineering design. 

The complete source code for the proposed 
ACP-MO algorithm is available at the following link 
[34]. 

 
4. DISCUSSION 

 
4.1 Algorithm Advantages 

 
Compared to other traditional metaheuristic 

algorithms, ACPMO exhibits significant advantages 
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in global search ability and convergence speed. For 
example, compared with genetic algorithms (GA) 
and particle swarm optimization algorithms (PSO), 
the sintering stage of ACPMO can effectively select 
high-quality solutions while maintaining solution 
diversity, thereby converging to the global optimal 
solution faster. Genetic algorithms (GA) and 
particle swarm optimization algorithms (PSO) 
usually have limited convergence speed and 
accuracy, and are prone to falling into local optimal 
solutions, especially in complex nonlinear multi-
peak problems. ACPMO solves these problems by 
integrating operations such as molding, sintering, 
and repair, with stronger global search capabilities 
and faster convergence speed. 

Additionally, ACPMO exhibits relatively low 
computational complexity and demonstrates high 
efficiency in solving practical engineering problems. 
Its high efficiency is not only reflected in its search 
ability, but also in its stability and reliability when 
dealing with large-scale problems. 

 
4.2 Future Work 

 
Future research should explore more complex 

parameter optimization methods, explore the 
cooling strategy of ACPMO in more depth, and, in 
addition to parameter optimization, ACPMO can 
also be integrated with other intelligent algorithms, 
and the application of ACPMO in multi-objective 
optimization problems should be further explored. 

 
5. CONCLUSION 

 
This paper proposes a ceramic process-based 

heuristic optimization algorithm (ACPMO), which 
shows good performance in various classic 
optimization problems. By simulating the molding, 
sintering and repairing steps inherent in the 
ceramic manufacturing process, ACPMO can 
effectively perform global optimization and 
overcome the common defects of traditional 
methods, such as easily falling into local optimal 
solutions in complex problem scenarios. 

Experimental results show that ACPMO has 
strong global search capabilities and fast 
convergence speed, and can provide high-quality 
solutions for complex optimization problems. 
Compared with existing mainstream optimization 
algorithms, ACPMO not only effectively alleviates 
the problem of local optimal solutions but also 
converges to the global optimum faster and more 
accurately. It is worth noting that ACPMO shows 
very competitive performance in Rastrigin and Levi 

functions, outperforming many traditional 
algorithms (genetic algorithm (GA), evolutionary 
algorithm (DE), functional analysis (FA), ant colony 
algorithm (ACO) and autocorrelation algorithm 
(SA)), while the performance difference with 
compressed sensing (CS) is not significant. This 
shows that ACPMO performs well in dealing with 
multi-peak complex optimization scenarios, with 
high accuracy and robustness, but for some other 
functions, ACPMO does not outperform some 
other advanced algorithms, which shows that 
although ACPMO is effective, it may have 
difficulties in dealing with certain functions, 
especially when the gradient is not clear near the 
global optimal value, there are multiple local 
optimal values, and it is relatively flat. 
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CS Cuckoo Search 

FA Firefly Algorithm 

ACO Ant Colony Optimization 

SA Simulated Annealing 

WOA Whale Optimization Algorithm 

COA Coati Optimization Algorithm 

AOA Aquila Optimizer 

PDO Perceptual Difference Optimizer 

 
REFERENCES  
 
[1] E. Trojovská, M. Dehghani, P. Trojovský, Zebra 

Optimization Algorithm: A New Bio-Inspired 
Optimization Algorithm for Solving 
Optimization Algorithm. IEEE Access, 10, 2022: 
49445–49473. 

https://doi.org/10.1109/ACCESS.2022.317278
9   

[2] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd 
Elaziz, A.H. Gandomi, The Arithmetic 
Optimization Algorithm. Computer Methods in 

https://doi.org/10.1109/ACCESS.2022.3172789
https://doi.org/10.1109/ACCESS.2022.3172789


J. Zhang / Applied Engineering Letters Vol.10, No.2, 109-124 (2025) 

 123 

Applied Mechanics and Engineering, 376, 
2021: 113609. 

https://doi.org/10.1016/j.cma.2020.113609 

[3] D.E. Finkel, DIRECT Optimization Algorithm 
User Guide. Center for Research in Scientific 
Computation, North Carolina State University, 
2(1), 2003: 1-14. 

[4] P.C. Fourie, A.A. Groenwold, The Particle 
Swarm Optimization Algorithm in Size and 
Shape Optimization. Structural and 
Multidisciplinary Optimization, 23(4), 2002: 
259–267. 

https://doi.org/10.1007/s00158-002-0188-0  

[5] A.-b. Meng, Y.-c. Chen, H. Yin, S.-z. Chen, 
Crisscross Optimization Algorithm and Its 
Application. Knowledge-Based Systems, 67, 
2014: 218–229. 

https://doi.org/10.1016/j.knosys.2014.05.004 

[6] M. Khishe, M.R. Mosavi, Chimp Optimization 
Algorithm. Expert Systems with Applications, 
149, 2020: 113338. 

https://doi.org/10.1016/j.eswa.2020.113338 

[7] D. Wang, D. Tan, L. Liu, Particle Swarm 
Optimization Algorithm: An Overview. Soft 
Computing, 22(2), 2018: 387–408. 

https://doi.org/10.1007/s00500-016-2474-6  

[8] A. Faramarzi, M. Heidarinejad, B. Stephens, S. 
Mirjalili, Equilibrium Optimizer: A Novel 
Optimization Algorithm. Knowledge-Based 
Systems, 191, 2020: 105190. 

https://doi.org/10.1016/j.knosys.2019.105190 

[9] T. Rahkar Farshi, Battle Royale Optimization 
Algorithm. Neural Computing and 
Applications, 33, 2021: 1139–1157. 

https://doi.org/10.1007/s00521-020-05004-4  

[10] Q. Bai, Analysis of Particle Swarm 
Optimization Algorithm. Computer and 
Information Science, 3(1), 2010: 180. 

https://doi.org/10.5539/cis.v3n1p180 

[11] Y. Zhang, S. Wang, G. Ji, A Comprehensive 
Survey on Particle Swarm Optimization 
Algorithm and Its Applications. Mathematical 
Problems in Engineering, 2015(1), 2015: 
931256. 

https://doi.org/10.1155/2015/931256 

[12] M. Ghaemi, M.R. Feizi-Derakhshi, Forest 
Optimization Algorithm. Expert Systems with 
Applications, 41(15), 2014: 6676–6687. 

https://doi.org/10.1016/j.eswa.2014.05.009 

[13] A.G. Gad, Particle Swarm Optimization 
Algorithm and Its Applications: A Systematic 

Review. Archives of Computational Methods in 
Engineering, 29, 2022: 2531–2561. 

https://doi.org/10.1007/s11831-021-09694-4  

[14] F.H. Zhou, Z.Z. Liao, A Particle Swarm 
Optimization Algorithm. Applied Mechanics 
and Materials, 303-306, 2013: 1369–1372. 
https://doi.org/10.4028/www.scientific.net/A
MM.303-306.1369  

[15] R. Rao, Jaya: A Simple and New Optimization 
Algorithm for Solving Constrained and 
Unconstrained Optimization Problems. 
International Journal of Industrial Engineering 
Computations, 7(1), 2016: 19–34. 

https://doi.org/10.5267/j.ijiec.2015.8.004  

[16] T. Liao, T. Stützle, M.A.M. de Oca, M. Dorigo, 
A Unified Ant Colony Optimization Algorithm 
for Continuous Optimization. European 
Journal of Operational Research, 234(3), 2014: 
597–609. 

https://doi.org/10.1016/j.ejor.2013.10.024 

[17] L. Abualigah, D. Yousri, M. Abd Elaziz, A.A. 
Ewees, M.A. Al-Qaness, A.H. Gandomi, Aquila 
Optimizer: A Novel Meta-Heuristic 
Optimization Algorithm. Computers & 
Industrial Engineering, 157, 2021: 107250. 

https://doi.org/10.1016/j.cie.2021.107250 

[18] A.R. Mehrabian, C. Lucas, A Novel Numerical 
Optimization Algorithm Inspired from Weed 
Colonization. Ecological Informatics, 1(4), 
2006: 355–366. 

https://doi.org/10.1016/j.ecoinf.2006.07.003 

[19] M. Khishe, M. Nezhadshahbodaghi, M.R. 
Mosavi, D. Martín, A Weighted Chimp 
Optimization Algorithm. IEEE Access, 9, 2021: 
158508–158539. 

https://doi.org/10.1109/ACCESS.2021.313093
3  

[20] H. Jia, H. Rao, C. Wen, S. Mirjalili, Crayfish 
Optimization Algorithm. Artificial Intelligence 
Review, 56(Suppl 2), 2023: 1919–1979. 

https://doi.org/10.1007/s10462-023-10567-4  

[21] F.A. Hashim, K. Hussain, E.H. Houssein, M.S. 
Mabrouk, W. Al-Atabany, Archimedes 
Optimization Algorithm: A New Metaheuristic 
Algorithm for Solving Optimization Problems. 
Applied Intelligence, 51, 2021: 1531–1551. 

https://doi.org/10.1007/s10489-020-01893-z  

[22] Y. Shi, An Optimization Algorithm Based on 
Brainstorming Process. In: Emerging Research 
on Swarm Intelligence and Algorithm 
Optimization. IGI Global, 2015: 1–35. 

https://doi.org/10.1016/j.cma.2020.113609
https://doi.org/10.1007/s00158-002-0188-0
https://doi.org/10.1016/j.knosys.2014.05.004
https://doi.org/10.1016/j.eswa.2020.113338
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1007/s00521-020-05004-4
https://doi.org/10.5539/cis.v3n1p180
https://doi.org/10.1155/2015/931256
https://doi.org/10.1016/j.eswa.2014.05.009
https://doi.org/10.1007/s11831-021-09694-4
https://doi.org/10.4028/www.scientific.net/AMM.303-306.1369
https://doi.org/10.4028/www.scientific.net/AMM.303-306.1369
https://doi.org/10.5267/j.ijiec.2015.8.004
https://doi.org/10.1016/j.ejor.2013.10.024
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1016/j.ecoinf.2006.07.003
https://doi.org/10.1109/ACCESS.2021.3130933
https://doi.org/10.1109/ACCESS.2021.3130933
https://doi.org/10.1007/s10462-023-10567-4
https://doi.org/10.1007/s10489-020-01893-z


J. Zhang / Applied Engineering Letters Vol.10, No.2, 109-124 (2025) 

 124 

 

© 2025 by the author. This work is licensed under a Creative Commons Attribution-Non Commercial  
4.0 International License (CC BY-NC 4.0). 

 

https://doi.org/10.4018/978-1-4666-6328-
2.ch001  

[23] J.E. Onwunalu, L.J. Durlofsky, Application of a 
Particle Swarm Optimization Algorithm for 
Determining Optimum Well Location and 
Type. Computational Geosciences, 14, 2010: 
183–198. 

https://doi.org/10.1007/s10596-009-9142-1  

[24] M.H. Amiri, N. Mehrabi Hashjin, M. 
Montazeri, S. Mirjalili, N. Khodadadi, 
Hippopotamus Optimization Algorithm: A 
Novel Nature-Inspired Optimization 
Algorithm. Scientific Reports, 14(1), 2024: 
5032. 

https://doi.org/10.1038/s41598-024-54910-3  

[25] S. Bandyopadhyay, S. Saha, U. Maulik, K. Deb, 
A Simulated Annealing-Based Multiobjective 
Optimization Algorithm: AMOSA. IEEE 
Transactions on Evolutionary Computation, 
12(3), 2008: 269–283. 

https://doi.org/10.1109/TEVC.2007.900837  

[26] B. Abdollahzadeh, N. Khodadadi, S. 
Barshandeh, P. Trojovský, F.S. 
Gharehchopogh, E.-S.M. El-kenawy, L. 
Abualigah, S. Mirjalili, Puma Optimizer (PO): A 
Novel Metaheuristic Optimization Algorithm 
and Its Application in Machine Learning. 
Cluster Computing, 27(4), 2024: 5235–5283. 

https://doi.org/10.1007/s10586-023-04221-5  

[27] M. Dehghani, Z. Montazeri, E. Trojovská, P. 
Trojovský, Coati Optimization Algorithm: A 
New Bio-Inspired Metaheuristic Algorithm for 
Solving Optimization Problems. Knowledge-
Based Systems, 259, 2023: 110011. 

https://doi.org/10.1016/j.knosys.2022.110011 

[28] A.E. Ezugwu, J.O. Agushaka, L. Abualigah, S. 
Mirjalili, A.H. Gandomi, Prairie Dog 

Optimization Algorithm. Neural Computing 
and Applications, 34, 2022: 20017–20065. 

https://doi.org/10.1007/s00521-022-07530-9  

[29] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. 
Mafarja, H. Chen, Harris Hawks Optimization: 
Algorithm and Applications. Future Generation 
Computer Systems, 97, 2019: 849–872. 

https://doi.org/10.1016/j.future.2019.02.02 

[30] S. He, Q.H. Wu, J.R. Saunders, Group Search 
Optimizer: An Optimization Algorithm Inspired 
by Animal Searching Behavior. IEEE 
Transactions on Evolutionary Computation, 
13(5), 2009: 973–990. 

https://doi.org/10.1109/TEVC.2009.2011992  

[31] B. Abdollahzadeh, F.S. Gharehchopogh, A 
Multi-Objective Optimization Algorithm for 
Feature Selection Problems. Engineering with 
Computers, 38(Suppl 3), 2022: 1845–1863. 

https://doi.org/10.1007/s00366-021-01369-9  

[32] T.S. Ayyarao, N.S.S. Ramakrishna, R.M. 
Elavarasan, N. Polumahanthi, M. Rambabu, G. 
Saini, B. Khan, B. Alatas, War Strategy 
Optimization Algorithm: A New Effective 
Metaheuristic Algorithm for Global 
Optimization. IEEE Access, 10, 2022: 25073–
25105. 

https://doi.org/10.1109/ACCESS.2022.315349
3  

[33] J.S. Pan, L.G. Zhang, R.B. Wang, V. Snášel, S.C. 
Chu, Gannet Optimization Algorithm: A New 
Metaheuristic Algorithm for Solving 
Engineering Optimization Problems. 
Mathematics and Computers in Simulation, 
202, 2022: 343–373. 

https://doi.org/10.1016/j.matcom.2022.06.00
7 

[34] https://github.com/JJJJGOOD/ACP-MO”   

(Access: 23 June 2025) 

 

 
 

 

https://doi.org/10.4018/978-1-4666-6328-2.ch001
https://doi.org/10.4018/978-1-4666-6328-2.ch001
https://doi.org/10.1007/s10596-009-9142-1
https://doi.org/10.1038/s41598-024-54910-3
https://doi.org/10.1109/TEVC.2007.900837
https://doi.org/10.1007/s10586-023-04221-5
https://doi.org/10.1016/j.knosys.2022.110011
https://doi.org/10.1007/s00521-022-07530-9
https://doi.org/10.1016/j.future.2019.02.02
https://doi.org/10.1109/TEVC.2009.2011992
https://doi.org/10.1007/s00366-021-01369-9
https://doi.org/10.1109/ACCESS.2022.3153493
https://doi.org/10.1109/ACCESS.2022.3153493
https://doi.org/10.1016/j.matcom.2022.06.007
https://doi.org/10.1016/j.matcom.2022.06.007
https://github.com/JJJJGOOD/ACP-MO

