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Abstract:  
In response to the energy crisis and the global push for sustainability, 
modern power grids are increasingly integrating renewable energy, plug-in 
electric vehicles, and energy storage systems. This evolution demands an 
advanced energy management system capable of handling the variability of 
renewable resources, uncertainties in electric vehicle performance, 
fluctuating electricity prices, and dynamic load conditions. To address these 
challenges, our study introduces a novel decision-making framework that 
leverages a new score function for comparing q-rung orthopair multi-fuzzy 
soft numbers. This approach employs the Criteria Importance Through 
Inter-criteria Correlation (CRITIC) method to determine objective weights 
while simultaneously incorporating subjective preferences through an 
integrated weighting scheme. The framework is further enhanced by 
applying the Combined Compromise Solution (CoCoSo) method within the 
Lq* q-rung orthopair multi-fuzzy soft decision-making structure to select 
optimal energy management policies. Extensive sensitivity analysis 
confirms the robustness and effectiveness of the proposed methodology, 
offering a promising solution for efficient energy management in modern 
power systems. 
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1. INTRODUCTION  
 

Energy management systems (EMS) optimize 
energy use in smart grids. EMS plays a crucial role in 
efficiency, with studies examining administrative 
strategies and optimization techniques [1]. For 
renewable integration, robust optimization has 
been applied to plug-in-vehicle-storage-grid 
systems, and a multi-criteria framework has been 
proposed for selecting storage technologies. 
Optimization in smart microgrids has been explored 
through cost-emission models, and EMS limitations 
in resilient microgrids have been studied [2]. Fuzzy-
based methodologies and optimization techniques 
further enhance EMS decision-making in smart 
grids. 

Multi-criteria decision-making (MCDM) 
frequently involves multiple options and evaluation 
criteria in everyday scenarios. MCDM challenges 
can be categorized into individual and group 
decision-making problems, where defining precise 
numerical values for attributes is often problematic. 
To address these complexities, Zadeh's fuzzy logic 
[3] is designed to handle imprecise and uncertain 
data and enhance decision-making in Energy 
Management Systems (EMS), which involve 
complex energy sources, dynamic demand, and 
operational uncertainties. Modeling EMS as a fuzzy 
Multi-Criteria Decision-Making (MCDM) problem 
[4,5] allows for better optimization and 
adaptability, addressing the limitations of 
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traditional MCDM methods in managing conflicting 
criteria. 

This innovation addressed vagueness and 
uncertainty, leading to numerous extensions, 
including intuitionistic, interval-valued, hesitant, 
neutrosophic, and Pythagorean fuzzy sets [6,7]. 
These advancements have broad applications in 
science, technology, economics, medical science, 
and engineering, solidifying their importance in 
solving complex problems. Among the novel 
developments in fuzzy set theory, multi-fuzzy sets 
(MFSs) [8,9] have gained attention for addressing 
challenges like pixel color and image recognition, 
which are difficult to resolve using other extensions. 
In 2017, Yager [10,11] introduced the concept of q-
rung orthopair fuzzy sets (q-ROFS), a generalization 
of Pythagorean fuzzy sets (PFS) [12]. When q=1, the 
concept simplifies to IFS, and when q=2, it 
corresponds to PFS. Extensive research [13] has 
since examined IFS, PFS, MFS, and q-ROFS, 
expanding their theoretical and practical 
applications. 

Soft sets, first proposed by Molodtsov [14], 
offered a flexible decision-making framework by 
incorporating parameter values. Maji et al. [13,15] 
extended this concept by defining fuzzy soft sets 
(FSS) and intuitionistic fuzzy soft sets (IFSS), which 
Peng et al. [16] further generalized into 
Pythagorean fuzzy soft sets (PFSS). Yang et al. [17] 
integrated multi-fuzzy sets with soft set models to 
develop multi-fuzzy soft sets (MFSS), which have 
since been expanded into various extensions  
[18-20]. Das and Kar [21] introduced intuitionistic 
multi-fuzzy soft sets (IMFSS) for solving complex 
decision-making problems.  

One significant application area for these 
theories is ranking or ordering linguistic expressions 
such as "good," "decent," and "tremendous." For 
instance, educators use qualitative terms to rank 
student performance, which helps clarify relative 
positions.  Lattice theory, introduced by Birkhoff 
[22] in the 1930s, has significantly contributed to 
fields like computer science, engineering, 
communication systems, and mathematics. 
Concepts such as ideals, morphisms, modular 
lattices, and distributive lattices have been 
extensively explored and enriched by scholars like 
George Gratzer, who examined their fundamentals 
and applications. Addressing this need, lattice-
ordered (LO) soft sets [23] were introduced in 2015, 
providing a framework to analyze linguistic terms 
with defined rankings. Over time, this concept 
evolved into intuitionistic fuzzy soft sets [24], anti-

lattice ordered double-framed soft sets [25], with 
the latter emerging in 2018. 

Weight determination methods are classified as 
subjective or objective. Subjective weights rely on 
decision-makers' expertise, influencing alternative 
ranking, while objective weights use mathematical 
models and assessment data, ensuring consistency. 
The CRITIC method, a key objective approach, 
quantifies criteria through standard deviations and 
inter-criteria relevance, proving effective across 
domains. The CoCoSo method, introduced by 
Yazdani et al. [26], enhances decision-making by 
integrating Simple Additive Weighting (SAW) and 
Exponentially Weighted Product (EWP) models 
through comparability sequences. Widely applied in 
technology selection, human resources, and 
supplier evaluation, CoCoSo is effective but faces 
challenges with complex datasets. 

An intuitionistic fuzzy soft CoCoSo-CRITIC 
framework [27] has been introduced for CCN cache 
placement, enhancing decision-making under 
uncertainty. Expanding on this, Pythagorean [28] 
and hesitant [29] fuzzy soft approaches have been 
applied for fog computing cache replacement and 
IoE company evaluation, respectively, addressing 
hesitation in decision-making and optimizing 
storage efficiency. A picture fuzzy soft CRITIC-
CoCoSo model [30] has also been introduced for 
supplier selection in Industry 4.0, handling 
uncertainty and conflicting criteria effectively. 

Vimala et al. [31] recently advanced the IMFSS 
model with q-ROMFSS framework. Pethaperumal 
et. al. [32] combines the strengths of q-ROMFS sets 
with the advantages of lattice ordering of 
parameters. Building on this foundation, this article 
integrates the Lq∗ q-rung orthopair multi-fuzzy soft 
set with CRITIC and CoCoSo methods for selecting 
energy management policies in smart grid systems. 
These enhancements improve the flexibility and 
precision of decision-making, enabling more 
accurate modeling and analysis in complex 
scenarios characterized by data uncertainty and 
vagueness. Fig. 1 illustrates the hierarchical 
structure of the proposed Lq* q-ROMFSS, outlining 
its key components and decision-making 
framework. 
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Fig. 1. Hierarchical Structure of Proposed Lq* q-ROMFSS 

The research gaps are in the existing CRITIC-
CoCoSo MCDM approaches, which fail to effectively 
capture multi-dimensional fuzzy soft information, 
limiting their ability to produce reliable outcomes. 
This study introduces a new perspective to address 
key challenges which are comparing q-rung 
orthopair multi-fuzzy soft numbers using a score 
function; identifying the most beneficial energy 
management policy under uncertain conditions and 
optimizing the energy management policy selection 
process through MCDM strategies. 

A new CRITIC-CoCoSo methodology is 
formulated within the Lq* q-ROMFSS framework to 
efficiently tackle MCDM challenges. The approach 
follows a three-phase process: 
1. In the first phase, a refined score function is 

developed to process q-rung orthopair multi-
fuzzy soft data by integrating multi-membership, 
non-membership, and hesitation degrees, 
ensuring a more accurate decision evaluation. 

2. The second phase involves determining 
objective weights using the Criteria Importance 
Through Inter-criteria Correlation (CRITIC) 
method. Simultaneously, an integrated 
weighting scheme is established by balancing 
subjective weight preferences with objective 
weight calculations. To address the issue of low 
discrimination, a CoCoSo algorithm is 
implemented within the Lq* q-ROMFSS 
framework, enhancing the effectiveness of the 
decision-making process. 

3. The proposed approach is applied to evaluate 
and select an energy management policy in a 
smart grid system, addressing literature gaps 
and offering a practical solution. Comparative 
and sensitivity analyses confirm its reliability and 
effectiveness. 
The study is structured as follows: 

• Section 2 reviews the foundational concepts of 
q-ROFS, q-ROMFS, and q-ROMFSS. 

• Section 3 introduces a novel score function for 
q-ROMFSN, addressing multi-membership, non-
membership, and hesitation and proposes an 
algorithm for Lq∗ q-ROMFS-based CoCoSo 
MCDM method.  

• Section 4 presents a practical application for 
selecting energy management policies in smart 
grids. 

• Section 5 validates the proposed methodology 
through sensitivity and comparative analysis. 

• Section 6 concludes with key insights and the 
broader implications of the proposed 
methodologies. 

 
2. PRELIMINARIES 
 

This section explores the key concepts of Lq* q-
rung orthopair multi-fuzzy soft set. 

Definition: 2.1 A fuzzy set QF on V is defined by 
mapping  𝜍: 𝑉 → [0, 1], where ς(r) for every r ∈ V, 
represents the degree of that object to which that 
element is related to the fuzzy set. It can be 
expressed as QF={(r, ς(r)):r ∈ V}. 

Definition: 2.2 Let V be a universal set, and G 
be a set of attributes. A soft set S over V is defined 
as a mapping:  𝑆: 𝐻 → 𝑃𝑉 where 𝑃𝑉 denotes the 
collection of all subsets of V. 

Definition: 2.3   A multi-fuzzy set (MkF-set) MF of 
dimension k (a positive integer) over V is defined as 

𝑀𝐹 = {(𝑟, 𝜁𝑝
𝑀𝐹
(𝑟)) : 𝑟 ∈  𝑉} where 𝜁𝑝𝑀𝐹

: 𝑉 →

 [0, 1], p = 1, 2, … , k is the multi-MemF of MF, and 
the set of all MFS of dimension k is denoted as 
MkFS(V). 
Definition:2. 4 A q-ROFS RF over V is defined as  

𝑅𝐹 = {(𝑟, 𝜁𝑅𝐹(𝑟), 𝜕𝑅𝐹(𝑟)) : r ∈  𝑉} for each 𝑟 ∈  𝑉 

the functions  𝜁𝑅𝐹: 𝑉 →  [0, 1], 𝜕𝑅𝐹: 𝑉 →  [0, 1] 

denotes the MemF and NMemF of 𝑅𝐹 respectively 
with the constraint that (𝜁𝑅𝐹)  

𝑞 + (𝜕𝑅𝐹)  
𝑞 ≤ 1 

with 𝑞 ≥ 1. For each r ∈  𝑉, the indeterminacy 
degree is given by: 

 Π𝑇𝐹(𝑟) =  √1 − ( 𝜁𝑇𝐹(𝑟))  
𝑞 − (𝜕𝑇𝐹(𝑟))  

𝑞 𝑞
. 

Definition: 2.5 A q-rung orthopair multi-fuzzy 
set (q-ROMFS) TF of dimension k  over V is defined 
as follows: 

𝑇𝐹 = {( 𝑟, (𝜁
1
𝑇𝐹
(𝑟), 𝜕1𝑇𝐹(𝑟)) , (𝜁2

𝑇𝐹
(𝑟), 𝜕2𝑇𝐹(𝑟)),

… , (𝜁𝑘
𝑇𝐹
(𝑟), 𝜕𝑘𝑇𝐹(𝑟))) , 𝑟 ∈ 𝑉 } 

for each 𝑟 ∈  𝑉  the functions  𝜁𝑝𝑇𝐹
: 𝑉 →

 [0, 1], 𝜕𝑝𝑇𝐹 ∶ 𝑉 → [0, 1] , p = 1, 2,… , k  denotes 

the multi- MemF and multi-NMemF of 𝑇𝐹 
respectively with the constraint that ( 𝜁𝑝

𝑇𝐹
)  𝑞 +

• Lattice Ordered Soft Set

Soft Set

• Lattice Ordered Fuzzy Soft Set

Fuzzy Soft set

• Lattice Ordered Intuitionistic Fuzzy Soft Set

Intuitionistic Fuzzy Soft Set

• Lattice Ordered Multi-Fuzzy Soft Set

Multi-Fuzzy Soft Set

• Lq* q-Rung Orthopair  Multi-Fuzzy Soft Set

q-Rung Orthopair  Multi-Fuzzy Soft Set
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 (𝜕𝑝
𝑇𝐹
)  𝑞 ≤ 1. For each r ∈  𝑉, the indeterminacy 

degree is given by: 

Π𝑆𝑇𝐹
𝑝 (𝑟) =  √1 − ( 𝜁𝑝𝑇𝐹

(𝑟))  𝑞 − (𝜕𝑝
𝑇𝐹
(𝑟))  𝑞 

𝑞
.  

The collection of all q-ROMkFS set of dimension 
k over V is indicated as q-ROMkFS(V).  

Definition: 2.6 A pair (𝑆𝑇𝐹 , 𝐺) is a q-ROMFS set 

of dimension k over V if 𝑆𝑇𝐹 : 𝐺 → q − ROMkFS(V) 

and it is defined as follows:  

(𝑆𝑇𝐹 , 𝐺) = { (ℎ, 𝑆𝑇𝐹(ℎ)) , ℎ ∈  𝐻 ⊑ 𝐺,

𝑆𝑇𝐹(ℎ) 𝜖 q − ROM
kFS(V)} 

where is:  

𝑆𝑇𝐹(ℎ) = {(𝑟, (𝜁
𝑝
𝑆𝑇𝐹(ℎ)

(𝑟), 𝜕𝑝𝑆𝑇𝐹(ℎ)
(𝑟))) , 𝑟 ∈

 𝑉, 𝑝 =  1,2, … , 𝑘 𝑎𝑛𝑑 𝑞 ≥ 1}. For simplicity,  

  𝑆𝑇𝐹(𝑟) = (𝜁
𝑝
𝑆𝑇𝐹(ℎ)

(𝑟), 𝜕𝑝𝑆𝑇𝐹(ℎ)
(𝑟)) is named as a 

q-rung orthopair multi-fuzzy soft number. 
 

Definition: 2.7 A q-rung orthopair multi-fzzy soft 
set (q-ROMkFSS) TF of dimension k defined over V is 
known as Lq* (Lattice Ordered) q-ROMFS set if for 
each ℎ1, ℎ2 ∈ 𝐻 ⊑ 𝐺  such that  ℎ1 ≤ ℎ2  implies 
𝑆𝑇𝐹(ℎ1) ⊑  𝑆𝑇𝐹(ℎ2). 

i.e., ( 𝜁𝑝
𝑆𝑇𝐹(ℎ1)

(𝑟) ≤  𝜁𝑝
𝑆𝑇𝐹(ℎ2)

(𝑟), 𝜕𝑝𝑆𝑇𝐹(ℎ1)
(𝑟) ≥

 𝜕𝑝𝑆𝑇𝐹(ℎ2)
(𝑟) ), for all 𝑟 ∈  𝑉   and p =1,2,.. k. Then 

the matrix representation of Lq* q-ROMFS set is 
represented as follows: 

ℵ = [ℵ𝑖𝑗] =  

(

  
 

 (𝜁1
𝑆𝑇𝐹(ℎ1)

(𝑟1),  𝜕
1
𝑆𝑇𝐹(ℎ1)

(𝑟1))  (𝜁1
𝑆𝑇𝐹(ℎ2)

(𝑟1),  𝜕
1
𝑆𝑇𝐹(ℎ2)

(𝑟1)) ⋯  (𝜁1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟1),  𝜕
1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟1))

 (𝜁1
𝑆𝑇𝐹(ℎ1)

(𝑟2),  𝜕
1
𝑆𝑇𝐹(ℎ1)

(𝑟2))  (𝜁1
𝑆𝑇𝐹(ℎ2)

(𝑟2),  𝜕
1
𝑆𝑇𝐹(ℎ2)

(𝑟2)) …  (𝜁1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟2),  𝜕
1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟2))

⋮ … ⋱ ⋮
 (𝜁1

𝑆𝑇𝐹(ℎ1)
(𝑟𝑥),  𝜕

1
𝑆𝑇𝐹(ℎ1)

(𝑟𝑥))  (𝜁1
𝑆𝑇𝐹(ℎ2)

(𝑟𝑥),  𝜕
1
𝑆𝑇𝐹(ℎ2)

(𝑟𝑥)) ⋯  (𝜁1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟1),  𝜕
1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟𝑥)))

  
 

𝑥∗𝑦

3. Lq* q-rung ORTHOPAIR FUZZY SOFT-MCDM 
USING CRITIC-CoCoSo METHOD 

 
3.1 Novel Score Function of q-ROMFSS 

 
This section presents an advanced score 

function tailored for q-ROMkFS numbers. The 
refined function considers the levels of multi-

membership (multi-memF), non-membership (non-
memF), and hesitation.   

Definition: 3.1 A score function of q-ROMFSNs 

𝑆𝑇𝐹(𝑟) = (𝜁𝑝
𝑆𝑇𝐹(ℎ)

(𝑟), 𝜕𝑝𝑆𝑇𝐹(ℎ)
(𝑟)) can be defined 

as:  

ℌ(STF(hj)(ri)) =  

∑ {( ζpSTF(hj)
(ri))

q − ( ∂p
STF(hj)

(ri))
q + (

e
( ζpSTF(hj)

(ri))
q− ( ∂pSTF(hj)

(ri))
q

e
( ζpSTF(hj)

(ri))
q− ( ∂pSTF(hj)

(ri))
q

+ 1
−
1
2
) (ΠS

TF(hj)

p
(ri))

q

 

}k
p=1  

k
 

where 𝑞 ≥ 1 and 𝑆𝑇𝐹(ℎ𝑗)(𝑟𝑖) ∈ [−1,1]. 

 
Definition: 3.2 For any two q-ROMFSNs  
𝑆𝑇𝐹(ℎ1)(𝑟1)) =

 (𝜁𝑝
𝑆𝑇𝐹(ℎ1)

(𝑟1), 𝜕
𝑝
𝑆𝑇𝐹(ℎ1)

(𝑟1))  𝑎𝑛𝑑  𝑆𝑇𝐹(ℎ2)(𝑟1)) =

(𝜁𝑝
𝑆𝑇𝐹(ℎ2)

(𝑟1), 𝜕
𝑝
𝑆𝑇𝐹(ℎ2)

(𝑟1)) of dimension k, then  

1. If ℌ(𝑆𝑇𝐹(ℎ1)(𝑟1))) <  ℌ(𝑆𝑇𝐹(ℎ2)(𝑟1))), then  

𝑆𝑇𝐹(ℎ1)(𝑟1)) <  𝑆𝑇𝐹(ℎ2)(𝑟1)). 

2. If ℌ(𝑆𝑇𝐹(ℎ1)(𝑟1))) >   ℌ(𝑆𝑇𝐹(ℎ2)(𝑟1))), then  

𝑆𝑇𝐹(ℎ1)(𝑟1)) >  𝑆𝑇𝐹(ℎ2)(𝑟1)). 

3. If ℌ(𝑆𝑇𝐹(ℎ1)(𝑟1))) =  ℌ(𝑆𝑇𝐹(ℎ2)(𝑟1))), then  

a. If  Π(𝑆𝑇𝐹(ℎ1)(𝑟1))) <  Π(𝑆𝑇𝐹(ℎ2)(𝑟1))), then 

𝑆𝑇𝐹(ℎ1)(𝑟1)) <  𝑆𝑇𝐹(ℎ2)(𝑟1)). 

b. If  Π(𝑆𝑇𝐹(ℎ1)(𝑟1))) >  Π(𝑆𝑇𝐹(ℎ2)(𝑟1))), then 

𝑆𝑇𝐹(ℎ1)(𝑟1)) >   𝑆𝑇𝐹(ℎ2)(𝑟1)). 

 
3.2 Lq* q-Rung Fuzzy Soft MCDM via CRITIC-

CoCoSo 
 
In Multi-Criteria Decision-Making (MCDM) 

problems, criteria are fundamental, with their 
associated weights reflecting the information 
embedded within each criterion, referred to as 
"objective weights". The CRITIC method provides a 
robust way to calculate these weights by evaluating 
the importance of each criterion through standard 
deviation and measuring the conflict between 
criteria using correlation coefficients. This method 
is extended to the Lq* q-ROMFSS framework, 
enabling the handling of evaluation data 
represented as q-ROMFSNs. In this context, 
𝑆𝑇𝐹(ℎ𝑗)(𝑟𝑖)  denotes the q-ROMFSNs of the ith 
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alternative under the jth criteria, while 𝑤𝑗
0 

represents the objective weight for the jth criteria. 
The process of determining these weights is guided 
by both beneficial and non-beneficial criteria (BC 
and N-BC). 

Let  𝑉 =  { 𝑟1, 𝑟2, … , 𝑟𝑥  }  represent the set of 
alternatives, and  H =  { h1, h2, … , hy}  denote the set 

of parameters with dimension k . Additionally, let 
𝜛 = {𝜛1 , 𝜛2… ,𝜛𝑦}, satisfying  ∑ 𝜛𝑗

𝑦
𝑗=1 = 1, 0 ≤ 𝜛𝑗 ≤

1 . Suppose the evaluation values of the ith 
alternative  𝑟𝑖  concerning the jth criteria ℎ𝑗  are 
expressed as the q-ROMFSN  𝑆𝑇𝐹(𝑟) =

(𝜁𝑝𝑆𝑇𝐹(ℎ)
(𝑟), 𝜕𝑝𝑆𝑇𝐹(ℎ)

(𝑟)) , as illustrated in Table 1. 

 

Table 1. Representation of Lq* q-rung orthopair multi-fuzzy soft matrix 

 𝒉𝟏 𝒉𝟐 ⋯ 𝒉𝒚 

𝑷𝟏  (𝜁1
𝑆𝑇𝐹(ℎ1)

(𝑟1),  𝜕
1
𝑆𝑇𝐹(ℎ1)

(𝑟1))  (𝜁1
𝑆𝑇𝐹(ℎ2)

(𝑟1),  𝜕
1
𝑆𝑇𝐹(ℎ2)

(𝑟1)) ⋯  (𝜁1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟1),  𝜕
1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟1)) 

𝑷𝟐  (𝜁1
𝑆𝑇𝐹(ℎ1)

(𝑟2),  𝜕
1
𝑆𝑇𝐹(ℎ1)

(𝑟2))  (𝜁1
𝑆𝑇𝐹(ℎ2)

(𝑟2),  𝜕
1
𝑆𝑇𝐹(ℎ2)

(𝑟2)) ⋯  (𝜁1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟2),  𝜕
1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟2)) 

⋮ ⋮ ⋮ ⋱ ⋮ 
𝑷𝒙  (𝜁1

𝑆𝑇𝐹(ℎ1)
(𝑟𝑥),  𝜕

1
𝑆𝑇𝐹(ℎ1)

(𝑟𝑥))  (𝜁1
𝑆𝑇𝐹(ℎ2)

(𝑟𝑥),  𝜕
1
𝑆𝑇𝐹(ℎ2)

(𝑟𝑥)) ⋯  (𝜁1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟𝑥),  𝜕
1
𝑆𝑇𝐹(ℎ𝑦)

(𝑟𝑥)) 

3.2.1 CRITIC-Algorithm 
 

Step 1: Calculate the score function ℵ =
[ℵ𝑖𝑗]𝑥∗𝑦

 of each q-ROMkFSN 𝑆𝑇𝐹(ℎ)(𝑟) =

(𝜁𝑝
𝑆𝑇𝐹(ℎ)

(𝑟), 𝜕𝑝𝑆𝑇𝐹(ℎ)
(𝑟)). 

 
 

ℵ𝑖𝑗 = 

∑

{
 
 

 
 

( 𝜁𝑝𝑆𝑇𝐹(ℎ𝑗)
(𝑟𝑖))

𝑞− ( 𝜕𝑝𝑆𝑇𝐹(ℎ𝑗)
(𝑟𝑖))

𝑞+

(

 
 𝑒

( 𝜁𝑝𝑆𝑇𝐹(ℎ𝑗)
(𝑟𝑖))

𝑞
− ( 𝜕𝑝𝑆𝑇𝐹(ℎ𝑗)

(𝑟𝑖))
𝑞

𝑒

( 𝜁𝑝𝑆𝑇𝐹(ℎ𝑗)
(𝑟𝑖))

𝑞
− ( 𝜕𝑝𝑆𝑇𝐹(ℎ𝑗)

(𝑟𝑖))
𝑞

+1

−
1

2

)

 
 
 (Π𝑆

𝑇𝐹(ℎ𝑗)

𝑝
(𝑟𝑖))

𝑞

 }
 
 

 
 

𝑘
𝑝=1  

𝑘
                     (1)     

Step 2: Standardize the score matrix ℵ to obtain 

its normalized form as  ℵ′ = [ℵ𝑖𝑗
′ ]
𝑥∗𝑦

: 

ℵ𝑖𝑗
′ =

{
 

 
ℵ𝑖𝑗−ℵ𝑗

−

ℵ𝑗
+−ℵ𝑗

− , 𝑖𝑓 𝑗 ∈ 𝐵𝐶

ℵ𝑗
+−ℵ𝑖𝑗

ℵ𝑗
+−ℵ𝑗

− , 𝑖𝑓 𝑗 ∈ 𝑁 − 𝐵𝐶
                          (2) 

where ℵ𝑗
− = min ℵ𝑖𝑗 and ℵ𝑗

+ = maxℵ𝑖𝑗. 

Step 3: Calculate the standard deviation for 
each criterion to assess its variability. 

σj = √(
∑ (ℵij

' -ℵj)̅̅ ̅̅i=1
2

x
)  where ℵ̅𝑗 =

∑ ℵ𝑖𝑗
′𝑥

𝑖=1

𝑥
          (3) 

Step 4: Determine the correlation coefficients 
for each pair of criteria to evaluate their 
relationships. 

𝛿𝑗𝑙 =
∑ (ℵ𝑖𝑗

′ −ℵ𝑗̅̅ ̅)((ℵ𝑖𝑙
′ −ℵ𝑙̅̅ ̅)

𝑥
𝑖=1

√∑ (ℵ𝑖𝑗
′ −ℵ̅𝑗)

2
𝑥
𝑖=1 ∑ (ℵ𝑖𝑙

′ −ℵ𝑙̅̅ ̅)
2𝑥

𝑖=1

                     (4) 

Step 5: Calculate the information value for each 
criterion to assess its impact on the decision-making 
process. 

𝑧𝑗 = 𝜎𝑗 ∑ (1 − 𝛿𝑗𝑙)
𝑦
𝑙=1                             (5) 

Step 6: Calculate the jth objective weight to 
determine the corresponding criterion's relative 
importance. 

𝜛𝑗 =
𝑧𝑗

∑ 𝑧𝑗
𝑦
𝑗=1

                                    (6) 

Step 7: Extract Integrated Weights through a 
Non-Linear Weighted Aggregation Method. 

Surjective weights, which are directly assigned 
by decision-makers (DMs), are denoted as 𝑤 =

{𝑤1, 𝑤2… ,𝑤𝑦} , satisfying  ∑ 𝑤𝑗
𝑦
𝑗=1 = 1, 0 ≤ 𝑤 ≤ 1 .  

Objective weights, which are indirectly computed 
by using Eq. (5), are represented as 𝜛 =

{𝜛1 , 𝜛2… ,𝜛𝑦} , adhering to ∑ 𝜛𝑗 = 1,𝑗
𝑦
𝑗=1 = 1, 0 ≤

𝜛𝑗 ≤ 1.  

The integrated weights  𝜉 = {𝜉1, 𝜉2, … , 𝜉𝑦}  are 
then derived as: 

 𝜉𝑗 =
𝜛𝑗∗𝑤𝑗

∑ 𝜛𝑗∗𝑤𝑗
𝑦
𝑗=1

                                (7) 

 
3.2.2 CoCoSo-Method 
 

The Combined Compromise Solution (CoCoSo), 
developed by Yazdani et al. [26], is an advanced 
method used in Multi-Criteria Decision-Making 
(MCDM). It is derived from integrating the  Simple 
Additive Weighting (SAW) methods and 
Exponentially Weighted Product (EWP), 
representing a compromise solution framework. In 
particular, the Lq* q-ROMFSS-CRITIC-CoCoSo 
method can be described in Fig. 2. 
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Fig. 2. Flowchart for the Proposed Lq* q-ROMFSS-CRITIC-CoCoSo Methodology

3.2.3 Algorithm:  Lq* q-ROMFSS CRITIC-CoCoSo 
 

Step 1: Generate the matrix ℶ = [ℶ𝑖𝑗]𝑥∗𝑦 using 

the linguistic terms presented in Table 3. 
Step 2: Transform the linguistic matrix into Lq* 

q-ROMFSS (𝑆𝑇𝐹 , 𝐺) , as outlined in Table 1. 

Step 3: Calculate the score function 𝐹 =

[𝐹𝑖𝑗]𝑥∗𝑦
 of each q-ROMkFSfN 𝑆𝑇𝐹(ℎ)(𝑟) =

(𝜁𝑝
𝑆𝑇𝐹(ℎ)

(𝑟), 𝜕𝑝𝑆𝑇𝐹(ℎ)
(𝑟)) by Eq.(1). 

Step 4: Standardize the score matrix U to obtain 
its normalized form as  ℵ′ = [ℵ𝑖𝑗

′ ]
𝑥∗𝑦

 by Eq.(2). 

Step 5: Calculate the standard deviations of 
each criteria using Eq.(3). 

Step 6: Determine the correlation measure for 
each pair of criteria to evaluate using Eq.(4) 

Step 7: Calculate the informational value for 
each criterion using Eq.(5). 

Step 8: Calculate the jth objective weight using 
Eq.(6). 

Step 9: Calculate the integrated weight 𝜉  by 
Eq.(7). 

Step 10:  Calculate the sum of the weighted 
comparability sequence as 𝐴𝑖: 

𝐴𝑖 = ∑ 𝜉𝑗 ∗ ℵ𝑖𝑗
′𝑦

𝑗=1                            (8) 

Step 11: Calculate the sum of power weight of 
comparability sequence as 𝐵𝑖  

𝐵𝑖 = ∑ ℵ𝑖𝑗
′ 𝜉𝑗𝑦

𝑗=1                               (9) 

Step 12: The three aggregation strategies 
formulated by Eqs. (10)-(12): 

𝛾𝑖𝑎 =
𝐴𝑖+𝐵𝑖

∑ 𝐴𝑖+𝐵𝑖
𝑥
𝑖=1

                              (10) 

 

𝛾𝑖𝑏 =
𝐴𝑖

min
𝑖
𝐴𝑖
+ 

𝐵𝑖

min
𝑖
𝐵𝑖

                     (11) 

 

𝛾𝑖𝑐 =
𝜆𝐴𝑖+(1−𝜆)𝐵𝑖

𝜆max
𝑖
𝐴𝑖+(1−𝜆)max

𝑖
𝐵𝑖
, 0 ≤ 𝜆 ≤ 1      (12) 

Where 𝛾 ia indicates the average of WSM and 
WPM, 𝛾 ib indicates the sum of relative scores of 
WPM and WSM about the optimal, and 𝛾ic reflects 
the scores representing a balanced compromise 
between WPM and WSM. 

Step 13: Obtain the evaluation value 𝛾𝑖  by 
Eq.(14): 

𝛾𝑖 = (𝛾𝑖𝑎𝛾𝑖𝑏𝛾𝑖𝑐)
1

3 +
1

3
(𝛾𝑖𝑎 + 𝛾𝑖𝑏 + 𝛾𝑖𝑐)    (13) 

Step 14: Order the alternatives in descending 
order according to the assessment value 𝛾𝑖. 
 

4. CASE STUDY: EVALUATING ENERGY 
MANAGEMENT POLICIES FOR SMART GRID 
OPTIMIZATION 

 
Smart grids integrate advanced technologies to 

optimize the generation, distribution, and 
consumption of energy. They play a vital role in 
incorporating renewable energy sources such as 
solar, wind, and hydroelectric power, contributing to 
sustainability. However, the intermittent nature of 
these renewable sources introduces grid instability 
and fluctuations in energy supply, making it 
essential to implement optimal energy 
management policies. 

These policies, including demand response 
programs, energy storage systems, and real-time 
data analytics, enhance grid performance by: 
• Balancing supply and demand to prevent 

instability. 
• Reducing energy wastage through smart 

scheduling. 
• Facilitating the effective integration of 

renewable energy sources. 
• Enhancing grid resilience to avoid outages. 

Ex
pe

rt
s 1.Select criteria.

2.  Gather data on 
alternatives.
3.Assess 
alternatives for 
each criteria.
4.Build the Lq* q-
rung orthopair 
multi-fuzzy soft 
matrix.

C
R
IT
IC

1. Compute the score 
function of the Lq* q-rung 
orthopair multi-fuzzy soft 
matrix.
2.  Normalize the score 
function values.
3. Calculate each criteria's 
standard deviation.
4. Determine criteria's 
correlation measure.
5. Derive objective weights.

C
oC

oS
o 1.Combine objective 

and subjective weights.
2. Compute weighted 
comparability and 
power weight 
sequences.
3.Apply appraisal score 
strategies to derive 
relative weights.
4. Calculate assessment 
values.
5. Rank alternatives 
and determine the best 
one.



M. Pethaperumal et al. / Applied Engineering Letters Vol.10, No.1, 35-47 (2025) 

 41 

Given the growing complexity of smart grids, 
evaluating the effectiveness of different energy 
management policies is crucial. This study applies 
the Lq* q-ROMFSS method to rank and select 

optimal energy management strategies based on 
key performance parameters. The diagrammatic 
representation of alternatives and criteria is shown 
in Fig. 3. 

Fig. 3. Information of Alternatives and Criteria

4.1 Example  
 

A mid-sized urban area with a peak electricity 
demand of 500 MW faces challenges related to grid 
congestion, high energy costs, and renewable 
energy intermittency. The local utility company aims 
to implement a set of energy management policies 
to: 
• Optimize load balancing and system efficiency. 
• Encourage consumer participation in energy 

conservation. 
• Improve real-time monitoring and demand 

forecasting. 
To address these challenges, four energy 

management policies are evaluated: 
1. P1 – Advanced Metering Infrastructure (AMI) – 

Highest-rated for real-time monitoring and 
demand forecasting. 

2. P2 – Demand Response (DR) – Effective in 
reducing peak demand and improving cost 
efficiency. 

3. P3 – Time-of-Use (TOU) Tariffs – Encourages 
consumer participation but depends on user 
adaptability. 

4. P4 – Net Metering – Promotes renewable 
integration but requires regulatory support. 

 

4.1.1 Policy Evaluation Criteria 
 
The effectiveness of these policies is assessed 

using a criteria set (H) determined by domain 
experts, prioritizing system efficiency, reliability, and 
sustainability before cost optimization. The criteria 
are as follows: 
1. Load Balancing Efficiency (h1) – Ensures matching 

of supply with demand, minimizing wastage. 
2. Peak Demand Reduction (h2) – Reduces grid 

stress and operational costs during peak periods. 
3. Renewable Energy Integration (h3) – Supports 

sustainability by efficiently incorporating clean 
energy sources. 

4. Grid Stability (h4) – Ensures system reliability and 
enhances overall performance. 

5. Cost Reduction (h5) – Secondary to technical and 
environmental goals but essential for long-term 
savings. 
These criteria set  H={h1,h2,h3,h4,h5} determined 

by domain experts are ordered hierarchically to 
prioritize system efficiency, reliability, and 
sustainability before cost optimization, using the 
Lq∗ q-ROMFSS information. The relative importance 
of these criteria is represented by the weights W = 
(0.10, 0.15, 0.20, 0.25, 0.30)T, reflecting the 
prioritization of the criteria in the evaluation 
process. The criteria are ordered as ℎ1 ≤ ℎ2 ≤ ℎ3 ≤

ℎ4 ≤ ℎ5   and its multi-dimensional evaluation is 
expressed in Table 2. 
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Table 2. The multi-dimensional assessment of energy management policy parameters  

Criteria Multi-dimensional Description 
Load Balancing 
Efficiency (h1) 

Distribution Stability – The extent to which energy is distributed uniformly across nodes 
during high-demand periods. 

Adaptability – How quickly the policy adapts to sudden changes in demand patterns. 

Energy Loss Reduction – Measured by the reduction in transmission and distribution losses. 

Peak Demand 
Reduction (h2)  

Demand Shift Capability – The policy's ability to shift energy usage from peak to off-peak 
hours. 

Incentive Effectiveness – How well the policy motivates users to reduce consumption during 
peak periods. 

Reduction Consistency – The degree to which peak demand is consistently reduced across 
multiple cycles. 

Renewable 
Energy 
Integration (h3) 

Resource Utilization – The percentage of renewable energy used versus available renewable 
capacity. 

Intermittency Management – The ability to handle fluctuations in renewable energy sources 
like solar or wind. 

Grid Compatibility – How well the renewable energy sources are integrated into existing grid 
infrastructure without disruptions. 

Grid Stability 
(h4) 

Frequency Regulation – The policy’s impact on maintaining a stable frequency (e.g., 50 Hz or 
60 Hz). 

Outage Reduction – The ability to prevent power outages during stress conditions. 

Fault Recovery Time – The speed at which the system recovers from faults or disruptions 
caused by sudden demand or supply shifts. 

Cost Reduction 
(h5) 

Operational Cost Savings – Reduction in expenses like energy storage, distribution, and 
maintenance. 

Consumer Savings – The financial impact of the policy on end-users' energy bills. 

Investment Efficiency – The cost savings ratio to the initial investment required for policy 
implementation. 

 
Table 3. The comparison evaluation table of the linguistic term and q-ROMFSN 

Linguistic 
Term 

Extremely 
Low 

Very Low Low Medium Above 
Medium 

Medium 
High 

High Very 
High 

Abbreviation EL VL L M AM MH H VH 

q-ROMFSN (0,1) (0.2,0.9) (0.5,0.6) (0.6,0.5) (0.7,0.4) (0.8,0.3) (0.9,0.2) (1,0) 

In the subsequent discussion, the suggested 
algorithm (λ=0.5) will be used to identify the best 
energy management policy by utilizing Lq∗ q-
ROMFS set information. 

Step 1: Generate the matrix ℶ = [ℶ𝑖𝑗]𝑥∗𝑦  using 

the linguistic terms in Table 3. 

[

(𝑀,𝑀, 𝐴𝑀) (𝑀,𝑀,𝑀𝐻) (𝑀,𝑀𝐻,𝑀𝐻) (𝐴𝑀,𝑀𝐻,𝐻) (𝑀𝐻,𝐻,𝐻)

(𝐿,𝑀,𝑀) (𝑀, 𝐴𝑀, 𝐴𝑀) (𝑀, 𝐴𝑀,𝑀𝐻) (𝐴𝑀,𝑀𝐻,𝐻) (𝑀𝐻,𝐻, 𝑉𝐻)

(𝑀, 𝐴𝑀, 𝐴𝑀) (𝑀, 𝐴𝑀,𝑀𝐻) (𝑀, 𝐴𝑀,𝐻) (𝑀𝐻,𝐻, 𝑉𝐻) (𝑀𝐻,𝐻, 𝑉𝐻)

(𝐿,𝑀,𝑀) (𝑀, 𝐴𝑀, 𝐴𝑀) (𝑀𝐻,𝐻,𝐻) (𝑀𝐻,𝐻, 𝑉𝐻) (𝐻,𝐻, 𝑉𝐻)

]                               (14)

  
Step 2: Transform the linguistic matrix into an 

Lq∗ q-ROMFS set information based on Table 1. 
 

 
 

[
 
 
 
 
 
 
 
 
< (0.6,0.5), (0.6,0.5), < (0.6,0.5), (0.6,0.5), < (0.6,0.5), (0.8,0.3), < (0.7,0.4), (0.8,0.3), < (0.8,0.3), (0.9,0.2),

(0.7,0.4) > (0.8,0.3) > (0.8,0.3) > (0.9,0.2) > (0.9,0.2) >
< (0.5,0.6), (0.6,0.5), < (0.6,0.5), (0.7,0.4), < (0.6,0.5), (0.7,0.4), < (0.7,0.4), (0.8,0.3), < (0.8,0.3), (0.9,0.2),

(0.6,0.5) > (0.7,0.4) > (0.8,0.3) > (0.9,0.2) > (1,0) >

< (0.6,0.5), (0.7,0.4), < (0.6,0.5), (0.7,0.4), < (0.6,0.5), (0.7,0.4), < (0.8,0.3), (0.9,0.2), < (0.8,0.3), (0.9,0.2),
(0.7,0.4) > (0.8,0.3) > (0.9,0.2) > (1,0) > (1,0) >

< (0.5,0.6)(0.6,0.5), < (0.6,0.5), (0.7,0.4), < (0.8,0.3), (0.9,0.2), < (0.8,0.3), (0.9,0.2), < (0.9,0.2), (0.9,0.2),
(0.6,0.5) > (0.7,0.4) > (0.9,0.2) > (1,0) > (1,0) > ]

 
 
 
 
 
 
 
 

       (15)
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Step 3: Calculate the score function ℵ =
[ℵ𝑖𝑗]𝑥∗𝑦 of each q-ROMFSN by using Eq.(1). 

[

0.1405 0.2086 0.3346 0.4754 0.6262
0.0275 0.1985 0.2666 0.4754 0.723
0.1985 0.2666 0.3494 0.723 0.723
0.0275 0.1985 0.6262 0.723 0.806

] 

Step 4: Standardize the score matrix U to obtain 
its normalized form as  ℵ′ = [ℵ𝑖𝑗

′ ]
𝑥∗𝑦

 by Eq.(2). The 

criteria ℎ1, ℎ2, ℎ3 are beneficial-oriented and ℎ4, ℎ5 
are non-beneficial-oriented. 

[

0.6614 0.1483 0.1910 1 1
0 0 0 1 0.4616
1 1 0.2303 0 0.4616
0 0 1 0 0

] 

 

Step 5: Calculate the standard deviations by Eq. 

(3), shown in Table 4. 

 

Table 4. Standard deviations 

𝜎1 𝜎2 𝜎3 𝜎4 𝜎5 

0.4323 0.4160 0.3822 0.5 0.3541 

 

Step 6: Calculate the correlation between 

criteria by using Eq.(4). 

𝛿𝑗𝑙 =

(

 
 

1 0.95 0.80 0.79 0.57
0.95 1 0.69 0.69 0.38
0.80 0.69 1 0.53 0.74
0.79 0.69 0.53 1 0.66
0.57 0.38 0.74 0.66 1 )

 
 

 

Step 7: Calculate the informational value of 

each criterion by Eq.(5), shown in Table 5. 

 

Table 5. The informational value of each criterion 

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 

0.3847 0.5366 0.4739 0.6650 0.5843 

 

Step 8: Calculate the objective weights of each 

criterion by Eq.(6), shown in Table 6. 

 

Table 6. Objective weights 

𝜛1 𝜛2 𝜛3 𝜛4 𝜛5 

0.145 0.203 0.179 0.252 0.221 

 

Step 9: Let us consider the subjective weight, as 

directly presented by decision-makers, is  𝑤 =

{0.10,0.15,0.20,0.25,0.30} , satisfying  ∑ 𝑤𝑗
𝑦
𝑗=1 =

1, 0 ≤ 𝑤 ≤ 1 . The objective weight, computed 

using Eq. (6), is 𝜛 = {0.10,0.15,0.20,0.25,0.30} , 

satisfying  ∑ 𝜛𝑗
𝑦
𝑗=1 = 1, 0 ≤ 𝜛 ≤ 1. Calculate the 

integrated weight 𝜉 by Eq.(7), shown in Table 7. 

 

Table 7. Integrated weights 

𝜉1 𝜉2 𝜉3 𝜉4 𝜉5 

0.0669 0.1391 0.1645 0.3251 0.3035 

 

Step 6: Calculate the sum of the weighted 
comparability sequence as 𝐴𝑖   by Eq.(8), shown in 
Table 8. 
 
Table 8. Comparability Sequence Ai 

𝐴1 𝐴2 𝐴3 𝐴4 

0.72887 0.4648 0.3835 0.1645 

 
Step 7: Calculate the sum of the power weight of 

the comparability sequence as 𝐵𝑖  by Eq.(9), shown 
in Table 9. 
 
Table 9. Comparability Sequence Bi 

𝐵1 𝐵2 𝐵3 𝐵4 

4.519 1.7903 1.575 1 

Step 8: The three aggregation strategies 
formulated using Eqs.(10)–(12), are presented in 
Table 10. 
 
Table 10. Appraisal score values 

𝛾1𝑎 𝛾2𝑎 𝛾3𝑎 𝛾4𝑎 

0.72887 0.4648 0.3835 0.1645 

𝛾1𝑏 𝛾2𝑏 𝛾3𝑏 𝛾4𝑏 

4.8827 4.616 3.906 2 

𝛾1𝑐 𝛾2𝑐 𝛾3𝑐 𝛾4𝑐 

1 0.4297 0.3732 0.2219 

 
Step 9: Obtain the evaluation value 𝛾𝑖 by Eq.(13), 

presented in Table 11. 
 
Table 11. Final values for ranking 

𝛾1 𝛾2 𝛾3 𝛾4 

3.4665 2.5020 2.1330 1.1421 

 
Step 10: Order the alternatives in descending 

order based on the assessment value 𝛾𝑖  as  
𝑃1 > 𝑃2 > 𝑃3 > 𝑃4 

Thus, it can be concluded that 𝑃1 represents the 
optimal energy management policy. 
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5. SENSITIVITY ANALYSIS 
 

Sensitivity analysis is a crucial technique in 
optimization and decision-making, allowing 
researchers to assess how variations in input 
parameters affect model outcomes. In this study, we 
examine the impact of parameter λ, derived from 
the CoCoSo approach, on the final ranking of energy 
management policies. Our findings indicate that λ 
directly influences the decision values, particularly 
for P1, which remains consistent at 3.4665 due to its 

dependency on Eq.(12). This is because A1 and B1 
represent the maximum values of Ai and Bi in policy 
P1, ensuring that Eq.(12) evaluates to 1. 
Furthermore, as λ increases, the decision values for 
P2, P3, and P4 also rise. This trend can be attributed 
to the role of 𝛾1𝑐  in Eq.(12) and the relationship 
between Bi and Ai in Example 4.1. The variations in 
these values illustrate the dynamic impact of λ on 
different policies, necessitating a deeper discussion 
of its implications, which follows in the subsequent 
section. Fig. 4 shows the sensitivity of parameter λ.

Series 1 Series 2 Series 3 Series 4 Series 5 Series 6 Series 7 Series 8 Series 9 Series
10

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P1 3.4665 3.4665 3.4665 3.4665 3.4665 3.4665 3.4665 3.4665 3.4665 3.4665

P2 2.3421 2.3782 2.4321 2.489 2.502 2.502 2.534 2.579 2.657 2.783

P3 2.0431 2.0642 2.0954 2.1198 2.1331 2.1452 2.1832 2.2243 2.1331 2.1331

P4 1.0342 1.0694 1.0998 1.1104 1.1421 1.1894 1.2352 1.2549 1.2871 1.2994
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Fig. 4. Sensitivity analysis

5.1 Comparative Analysis 
 

In evaluating the Lq* q-ROMFSS CRITIC-CoCoSo 
technique against other fuzzy soft set-based 
decision-making methods such as IFSS [27], PFSS 
[28], HFSS [29], and Picture FSS [30]. Table 11 
presents the comparative analysis of proposed 
methodology. 
• Compared to traditional fuzzy MCDM methods, 

Lq* q-ROMFSS CRITIC-CoCoSo offers a more 
structured approach to identifying critical factors 
and analyzing their multi-dimensional 
interdependencies in complex systems. 

• The IFSS CRITIC-CoCoSo method is constrained 
by the requirement that the sum of membership 
and non-membership degrees cannot exceed 1. 
In contrast, Lq* q-ROMFSS CRITIC-CoCoSo 

eliminates this restriction, making it better 
suited for large-scale, complex decision-making 
scenarios. 

• The PFSS CRITIC-CoCoSo technique restricts the 
square sum of membership and non-
membership degrees to a maximum of 1, limiting 
its ability to handle uncertainties. Lq* q-ROMFSS 
CRITIC-CoCoSo, however, integrates subjective 
preferences and uncertainties more effectively, 
leading to more robust decision-making. 

• Techniques like HFSS, Interval-Valued q-ROFSs, 
Picture FSSs CRITIC- CoCoSo struggle with 
incomplete and uncertain data. The proposed 
CRITIC-CoCoSo method addresses this challenge 
by accommodating both complete and 
incomplete information, enhancing decision 
accuracy. 
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Table 11. Comparison For Proposed Lq* q-ROMFSS CRITIC-CoCoSo 

Methods Truthiness Falsehood 
Loss of 

Information 
Managing multi-
dimensional data 

Intuitionistic fuzzy soft CRITIC-CoCoSo [27] ✔ ✔ ✔ X 

Pythagorean fuzzy soft CRITIC-CoCoSo [28] ✔ ✔ ✔ X 

Hesitant fuzzy soft CRITIC-CoCoSo [29] ✔ ✔ ✔ X 

Picture fuzzy soft CRITIC-CoCoSo [30] ✔ ✔ ✔ X 

Proposed Lq* q-ROMFSS CRITIC-CoCoSo ✔ ✔ ✔ ✔ 

Advantages and Limitations are: 
1. We introduce a new score function for q-rung 

orthopair multi-fuzzy soft numbers that 
considers multi-memF, non-memF, and 
hesitancy, improving decision-making precision. 

2. The Lq∗ q-ROMFSS-MCDM model was chosen 
for its ability to handle complex decision-making 
with multi-dimensional fuzzy information and 
uncertainty. It integrates multi-membership and 
multi-non-membership values with lattice 
ordering parameters, making it highly adaptable 
to real-world problems. 

3. Current Lq* q-ROMFSS MCDM methods often 
struggle with low discrimination, 
counterintuitive results, and parameter 
restrictions, making them less effective in 
selecting the optimal alternative. The CoCoSo 
method offers a practical solution for handling 
uncertain information. 

4. Existing weight-determination methods focus 
either on subjective or objective weights, 
neglecting the integration of both. This work 
proposes a combined approach to incorporate 
expert preferences and assessment data better. 

 Despite its strengths, the proposed method   has    
some limitations: 
1. The Lq∗ q-ROMFSS CRITIC-CoCoSo approach 

struggles to handle uncertain information where 
both multi-MemF and multi-NMemF are equal 
to 1. 

2. It is less effective in handling diverse, uncertain 
environments. 

 
6. CONCLUSION  
 

This study presents a Lq* q-rung orthopair multi-
fuzzy soft (Lq* q-ROMFSS) CRITIC-CoCoSo approach 
for selecting optimal energy management policies 
in smart grids. The proposed method ensures a 
balanced alignment between energy supply and 
demand while adhering to key economic, reliability, 
and safety constraints. The integration of lattice 
ordering structures introduces a new dimension to 
computational intelligence, fuzzy modeling, and 

decision-making processes. This research develops 
an advanced score function to enhance the 
comparison of q-rung orthopair multi-fuzzy soft 
numbers. A case study is conducted to validate the 
effectiveness of the CRITIC-CoCoSo method in 
optimizing energy management policy selection 
within the Lq* q-ROMFSS framework. Furthermore, 
a detailed comparative and sensitivity analysis is 
performed, benchmarking the CRITIC-CoCoSo 
approach against existing methodologies. This 
thorough evaluation provides insights into the 
strengths, limitations, and practical implications of 
the proposed technique, offering valuable guidance 
for decision-makers in the energy sector. 

For future research, we recommend exploring 
the potential applications of the proposed hybrid 
models across various domains and developing 
extensions, particularly those incorporating q-rung 
orthopair multi-fuzzy soft numbers with lattice 
ordering criteria. Additionally, involving a broader 
group of managers and experts in the decision-
making process would enhance the 
representativeness and reliability of the results. 
Despite these future directions, the effectiveness 
and practicality of the proposed hybrid model 
remain undeniable. 
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