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Abstract:  
The Nusselt number, heat transfer, and friction factor of flat plate collector 
working with Al2O3-CuO/water hybrid nanofluids were estimated 
experimentally, and the obtained data is used for the artificial neural 
network- Support Vector Regression method. Experiments were conducted 
from 09:00 to 16:30 hr, with volume loadings of 0.048%, 0.096%, 0.144%, 
0.192% and 0.24%, respectively. The entire region is divided into time zone 
1 (09:00 hr to 13:00 hr) and time zone 2 (13:00 hr to 16:30 hr). Results show 
the time zone-1, at 13:00 hrs, at 0.24% vol. and a Reynolds number of 
364.66, the Nusselt number is enhanced by 20.43%, and at time zone-2, at 
16:30 hrs, at 0.24% vol., and at Reynolds number of 211.23, the Nusselt 
number is enhanced by 14.08%, respectively, over the base fluid. Similarly, 
for time zone-1 and time zone-2, at 13:00 hrs and 16:30 hrs, at 0.24% vol. 
and at Reynolds number 364.66 and 211.23, the friction factor is enhanced 
by 15.34% and 11.50%, respectively, over the base fluid. The employed 
support vector regression algorithm accurately predicts the values with 
experimental data. The correlation coefficients found for the Nusselt 
number, heat transfer, and friction factor are 0.99497, 0.9947, and 
0.99955, respectively.     
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1. INTRODUCTION    
 

Solar energy, derived from the sun, is the primary 
source of many forms of renewable energy. The 
annual solar energy received by the Earth is 
3,400,000 EJ, the total solar flux reaching the Earth is 
1.08×108 GW, and the solar constant at the Earth's 
distance from the sun is 1367 W/m2. This sustainable 
energy source can be utilised for the generation of 
electricity as well as for the heating of water; sun 

photovoltaic cells can directly harness power from 
sun energy. Similarly, solar collectors can be used to 
directly obtain hot water from solar energy. Solar 
collectors are devices that transform solar radiation 
into thermal energy. The global thermal energy 
conversion achieved by solar collectors at the end of 
2013 was around 37 GWh, corresponding to a total 
area of 53.5 × 107 m2 [1].  

The solar collectors are of the flat plate variety, 
characterised by their uncomplicated design, cost-
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effectiveness, and ease of operation. Due to its 
superior benefits compared to other collectors, 
these collectors are commonly utilised for home and 
industrial purposes. The flat plate collector (FPC) 
captures solar energy and turns it into thermal 
energy by transferring it through a working fluid, 
such as water (w), ethylene glycol (EG), and 
propylene glycol (PG) [2,3]. The FPC system utilises 
an absorber plate of either aluminium or 
copper coated with a highly efficient selective 
coating to maximise solar energy absorption. 
Replacing poor thermal conductivity fluids with high 
thermal conductivity nanofluids can boost the 
collector heat transfer rates. The notion of 
nanofluids was first found by Choi [4], who 
introduced the dispersion of solid particles of 
nanometre dimensions into a base fluid.  

The preliminary research on FPC involved using 
mono nanofluids, which are single nanofluids. 
Ziyadanogullari et al. [5] employed nanofluids 
consisting of Al2O3/water, CuO/water, and 
TiO2/water in FPC and achieved improved collector 
efficiency. In their study, Sundar et al. [6] examined 
using Al2O3/water nanofluid in FPC. They achieved a 
collector efficiency of 76% when the nanofluid 
concentration (𝜙) was 0.3%, and the mass flow rate 
was 0.083 kg/sec. Rajput et al. [7] employed 
Al2O3/water in FPC and observed a collector 
efficiency of 21.32% when the concentration of Al2O3 
was 0.3% and the volume flow rate was 1.3 L/min. 
Hawwash et al. [8] utilised Al2O3/water nanofluid in 
FPC and demonstrated a 16.67% improvement in 
collector efficiency. Jouybari et al. [9] discovered 
that the collector efficiency of SiO2/water nanofluids 
in a FPC was 73% when the volume flow rate was 1.5 
L/min, and the concentration of SiO2 was 0.6%. Kiliç 
et al. [10] discovered that the collector efficiency of 
a FPC can reach 48.67% when employing a nanofluid 
made of TiO2 nanoparticles dispersed in water at a 
concentration of 2 wt%. Said et al. [11] utilised TiO2-
water nanofluids in FPC and achieved an improved 
thermal efficiency of the collector.  

Hybrid nanoparticles are formed when two or 
more nanoparticles mix with each other. The hybrid 
nanofluids exhibit enhanced synergistic features, 
namely in terms of thermal conductivity and 
viscosity, compared to nanofluids based only on 
single nanoparticles. The use of hybrid nanofluids in 
FPC and their ability to improve heat transfer rates. 
Okonkwo et al. [12] employed a hybrid nanofluid 
consisting of Al2O3-iron and water in FPC. They 
observed a collector efficiency of 1.79% when the 
volume fraction (𝜙) of the nanofluid was 0.1%. 

Verma et al. [13] employed CuO-MWCNT/water and 
MgO-MWCNT/water hybrid nanofluids in FPC and 
observed that the MgO-MWCNT/water hybrid 
nanofluid exhibited greater exergetic efficiency 
(71.54%) and energy efficiency (70.55%). Saleh and 
Sundar [14] employed a hybrid nanofluid consisting 
of MWCNT+Fe3O4 in water for FPC. They achieved a 
28.09% improvement in collector efficiency and 
enhancements of 39.23% in heat transfer coefficient 
and 18.98% in friction factor at a concentration of 
0.3% and a Reynolds number of 1413. In their study, 
Sundar et al. [15] utilised a hybrid nanofluid 
consisting of ND-Co3O4 and water in an FPC system. 
They found that this nanofluid led to a 22.91% 
improvement in collector efficiency and 
enhancements of 21.23% in the Nusselt number and 
13.2% in the friction factor. These improvements 
were obtained at a concentration of 0.15 wt% and a 
volume flow rate of 1.35 L/min. Elsherbiny et al. [16] 
observed a maximum PEC of 1.845 using Al2O3-ZnO-
Ag hybrid nanofluids in microchannel heat sinks. 
Elsherbiny et al. [17] explained the miniature 
nanofluids technology for heat transfer 
enhancement in micro-cooling based on a review 
study.    

Ajeena et al. [18] observe thermal and exergy 
efficiencies of FPSC enhanced by 26.2% and 16.05% 
with ZrO2-SiC/DW hybrid nanofluid.  Alfellag et al. 
[19] prepared 20:80, 40:60, 50:50, 60:40, and 80:20 
(CT-MWCNTs:TiO2)/water nanofluids and found 
60:40 based hybrid nanofluids showing high 
thermophysical performance factor compared to 
other ratios.  Selvam et al. [20] observed thermal and 
exergy efficiency of 72.8% and 22.9%, a heat transfer 
coefficient of 133.2 W/m2K, and a Coefficient of 
Performance of 7.9 by using Al2O3/Ni/water 
nanofluids in an FPC. Sathish et al. [21] observed 
70.4% of thermal efficiency by using Al2O3, Cu, 
MWCNT, SiO2 blended nanofluids in a solar flat plate 
collector. 

Using artificial neural networks (ANNs) to predict 
experimental results would improve data precision 
and save time consumption. The ANN facilitate the 
process of curve fitting and the creation of new 
correlations. Therefore, most researchers today 
consider ANN to be the ideal option for assessing 
their experimental data. This document provides a 
study on the utilisation of nanofluids in FPC with ANN 
is presented here. Xu et al. [22] employed various 
ANN models, such as LS-SVR and ANFIS, to analyse 
the experimental data of Al2O3/water nanofluids in 
FPC. They observed an average fluctuation of 
2.772%, a mean squared error (MSE) of 0.000392, 
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and a coefficient of determination (R2) of 0.99312 
between the experimental and ANN data. Mirzaei 
and Mohiabadi [23] utilised an Artificial Neural 
Network (ANN) to analyse the data of water-mixed 
CuO and Al2O3 in FPC. The results showed a 
difference of ±2.0% between the experimental and 
ANN data.  

Zhang et al. [24] employed the ANN-Lavenberg-
Marquadt model to analyse the rGO/water data in 
FPC. The study revealed a perfect alignment 
between the experimental data and the ANN data. In 
their study, Sadeghzadeh et al. [25] employed the 
ANN-MLP and ANN-RBF models to analyse the 
experimental data of TiO2/water in FPC. They 
observed that the ANN-MLP model exhibited higher 
accuracy in its predictions compared to the ANN-RBF 
model. Bahiraei et al. [26] have explained the 
importance of Artificial Intelligence (AI) algorithms 
for thermal systems in their review paper. Tomy et 
al. [27] utilised artificial neural networks (ANN) to 
analyse the experimental data of Ag/water 
nanofluids in FPC. They observed a high level of 
accuracy, with a difference of only ±2.0% between 
the experimental and ANN data.  

Upon analysing the data, the research has 
determined that there is a lack of information 
regarding heat transfer and friction factor data in 
relation to the use of Al2O3-CuO hybrid nanofluid in 
FPC. Additionally, there is no available data on the 
predictions made by the ANN-support vector 
regression model for the same hybrid nanofluids. 
The study focused on the development and 
utilization of uniform water mixed nanofluids to 
evaluate their thermophysical properties and 
thermal efficiency. Additionally, the study examined 
the flow of Al2O3-CuO hybrid nanofluid in FPC under 
thermosyphon conditions. 

 
2. MATERIAL AND METHODS 

 
2.1. Preparation of Hybrid Nanofluids 
 

The hybrid nanofluids were prepared by adding 
nanoparticles into water. Table 1 is the physical 
properties of Al2O3, CuO and water, respectively.  

Since, there is no standard procedure to select 
the mixing ratio of Al2O3, and CuO nanoparticles in 
the literature, hence the equal ratio (50:50%) of 
Al2O3, and CuO nanoparticles were considered for 
the preparation of Al2O3-CuO hybrid nanofluids. The 
weight of Al2O3, and CuO nanoparticles required is 
estimated from Eq. (1).  

Vol. concentration, 𝜙 × 100 =
[

𝑊𝑛𝑝 

𝜌𝑛𝑝 
]

[
𝑊𝑛𝑝 

𝜌𝑛𝑝 
]+[

𝑊𝑏𝑓 

𝜌𝑏𝑓 
]

       (1)  

where: 𝜙 is volume concentration (%), 𝑊𝑛𝑝 is the 

weight of nanoparticles (Al2O3 and CuO) (g), 𝑊𝑏𝑓 is 

the weight of base fluid, 𝜌𝑛𝑝 is the density of 

nanoparticles (Al2O3 is 3990 kg/m3, CuO is 6310 
kg/m3), and 𝜌𝑏𝑓 is density of base fluid (1000 kg/m3).  

Since a 50:50% of Al2O3 and CuO nanoparticles 
were used in this study, hence 4 L of water-based 
Al2O3 nanofluids were prepared and kept separately, 
and then another 4 L of water-based CuO nanofluids 
were prepared and kept separately, later both 
nanofluids were mixed together in a large quantity 
tank with mechanical stirrer in order to get hybrid 
nanofluids. Table 2 indicates the weights of Al2O3 and 
CuO nanoparticles required for 4 L of water for the 
preparation of various nanofluids. 

Since there is no standard rule to choose the 
specific volume concentrations of nanofluids in the 
open literature, even in the published papers also 
researchers have chosen their own volume 
concentrations. In general, there is an agglomeration 
problem for higher particle volume concentrations in 
the base fluid, creating clogging in test setup. So, to 
avoid such agglomeration problems, we have chosen 
very low particle volume concentrations.  Moreover, 
the cost of the nanoparticles also matters for the 
preparation of large-volume concentrations of 
nanofluids. For large-volume concentrations, a large 
quantity of nanoparticles is required, and we need to 
spend lots of money.  

In order to prepare the 0.048% vol. of water-
based Al2O3 nanofluid, 7.68 g of Al2O3 nanoparticles 
were dispersed in 4 L of water and then stirred with 
a mechanical stirrer for about 3 hrs at 300 rpm. 
Later, another nanofluid of 0.096%, 0.144%, 0.192%, 
and 0.24% vol. were prepared by dispersing 15.37, 
23.07, 30.78, 38.49 g of Al2O3 nanoparticles into 4 L 
of water and then stirred with mechanical stirrer for 
3 hrs at 300 rpm.  

Similarly, for the preparation of 0.048% vol. of 
water-based CuO nanofluid, 12.15 g of CuO 
nanoparticles were dispersed in 4 L of water and 
then stirred with a mechanical stirrer for about 3 hrs 
at 300 rpm. Later, another nanofluid of 0.096%, 
0.144%, 0.192%, and 0.24% vol. were prepared by 
dispersing 24.31, 36.49, 48.68, 60.87 g of CuO 
nanoparticles into 4 L of water and then stirred with 
a mechanical stirrer for 3 hrs at 300 rpm. 

Later, the same Al2O3 and CuO nanofluids 
concentrations were mixed with a mechanical stirrer 
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for about 3 hrs at 300 rpm. The prepared hybrid 
nanofluids are indicated in Fig. 1. 

A stability test is required to understand whether 
the nanoparticles are uniformly dispersed in base 
fluids. The stability of the nanoparticles in the base 
fluid is expressed in terms of its zeta potential value. 
The homogeneity of the created Al2O3-CuO/water 
hybrid nanofluids was examined with a ZetaSizer 
Nano ZS instrument (Malvern Instruments, USA). The 
gadget utilises the dynamic light scattering (DLS) 
technology. A cuvette is filled with 2 ml of hybrid 
nanofluid before being inserted into the equipment. 
The Zeta potential can demonstrate the 
homogeneity of nanofluids. If the zeta potential of 
manufactured nanofluids is 30 mV or lower, they are 
classified as stable nanofluids. The prepared hybrid 
nanofluids result in repulsive interactions between 
them. As a result, the Al2O3-CuO disperse evenly 
throughout the base fluid. According to the data, the 
zeta potential values for the loadings of 0.048%, 
0.096%, 0.144%, 0.192%, and 0.24% are -42.3, -42.1, 
-41.4, 40.2, and -39.6 mV, respectively. The 
relationship between the zeta potential of particles 
and volume loadings is widely recognised. When the 
volume loading of the base fluid increases, the 
repulsive forces gradually decrease. 

 

 

Fig. 1. Prepared hybrid nanofluids 

 
Table 1. The physical properties of Al2O3, and CuO 
nanoparticles 

 Density, 
kg/m3 

Cp, 
(J/kgK)   

k, 
(W/mK)  

Color Diam. 
(nm) 

Al2O3 3990 785.2 30 White 50 

CuO 6310 540 33 Black 27 

Water 1000 4179 0.613 --- ---- 

 

 

 

Table 2. Required weights of CuO and Al2O3 nanoparticles 
for the known volume loadings 

 Particle volume loading, 𝝓 (%) 

0.048% 0.096% 0.144% 0.192% 0.24% 

CuO 12.15g 24.31g 36.49g 48.68g 76.98g 

Al2O3 7.68g 15.37g 23.07g 30.78g 38.49g 

Al2O3-

CuO, 
19.83g 39.68g 59.56g 79.46g 99.36g 

Water 
(L) 

8 L 8 L 8 L 8 L 8 L 

 
2.2. Experimental Setup 
 

A flat plate collector is a device used to collect and 
absorb solar energy. Fig. 2(a) is the schematic 
diagram, and Fig. 2(b) is a photograph of an 
experimental setup used for water and hybrid 
nanofluids. The parts used are: (1) heat exchanger 
tank, (2) pump, (3) flow control valve, (4) flowmeter, 
(5) inlet temperature, (6) glass cover, (7) outlet 
temperature, (8) by-pass valve, (9) frame, (10) cold 
water tank, (11) cold water inlet, (12) cold water 
outlet, and (13) cold water supporter. The thermal 
efficiency of the collector is then calculated. The 
solar collector was positioned at Gondar, a town in 
Ethiopia situated at a latitude of 12.6˚ N and a 
longitude of 37.47˚ E in the northern hemisphere.  

 

Fig. 2(a). Schematic diagram of an experimental setup 
 

The town is elevated at 2133 meters above sea 
level. The flat plate solar collector was mounted at a 
tilt angle of 27.6˚ to maximise the amount of 
gathered radiation. The setup primarily includes an 
absorber plate for absorbing solar radiation, a single 
glass cover for minimising heat loss, a serpentine 
tube (inner diameter of 0.006 m, outer diameter of 
0.007 m, and length of 5 m) for fluid circulation 
through the solar collector, a storage tank for storing 
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working fluids and serving as a heat exchanger, a 
pump for delivering the fluid to the serpentine pipes, 
a bypass valve for redirecting fluids after adjusting 
the control valve, adjustable valves for controlling 
the flow rate in the main flow loop and bypass line, 
a flow meter for measuring fluid flow rate, a cold 
water storage tank, a table for supporting the water 
tank, and collector support for holding the flat plate 
solar collector. During the experimental test, the 
temperatures of the glass and plate, as well as the 
inlet and exit temperatures and mass flow rates of 
the working fluids, are measured to determine the 
thermal efficiency of the flat plate solar collector. 
The experiments were conducted from 09:00 to 
16:30, with volume loadings of 0.048%, 0.096%, 
0.144%, 0.192% and 0.24%, respectively. The time 
between 09:00 to 16:30 is divided into time zone-1 
(09:00 to 13:00 hr) and time zone-2 (13:00 to 16:30 
hr). The mass flow rate for time zone 1 varied from 
0.56 to 1.36 L/min, and the mass flow rate for time 
zone 2 varied from 1.24 to 0.782 L/min. 
The Nusselt number and friction factor of working 
fluid is given by Sundar et al. [15].    

𝑄 =  𝑚 ̇ 𝐶𝑝(𝑇𝑜 − 𝑇𝑖) = 𝑈𝑜𝐴𝑜(𝑇𝑠 − 𝑇𝑚)         (2)         

1

𝑈𝑜𝐴𝑜
=

1

ℎ𝑖𝐴𝑖
+

ln (
𝑑𝑜
𝑑𝑖

)

2𝜋𝑘𝐿
                       (3)                                                                                                      

where: 𝑄 is rate of heat flow (W), 𝑚 ̇ is mass flow rate 

(kg/s), 𝐶𝑝 is specific heat (J/kg K), 𝑈𝑜 is the overall 

heat exchanger (W/m2),  𝐴𝑜 is area (m2), and 𝑇 is the 

temperature (oC), suffixes, ‘o’ is outlet, ‘I’ is inlet, ‘s’ 

is surface, and ‘m’ is mean. The ℎ𝑖 is heat transfer 

coefficient (W/m2K), 𝑘 is thermal conductivity 

(W/mK), and 𝐿 is length (m).  

 

 

Fig. 2(b). Photograph of an experimental setup 
 
 

Through Eqns. (2) and (3), the ℎ𝑖 is obtained [15].  

𝑁𝑢 =
ℎ𝑖𝑑𝑖

𝑘
                                       (4)                                                                                                          

𝑅𝑒 =
4𝑚̇

𝜋𝑑𝜇
                                        (5)    

where: 𝑁𝑢 is Nusselt number, 𝑅𝑒 is Reynolds 

number, and 𝑑 is diameter (m).                                                                                                         

The factor in friction was estimated by [28],    

𝑓𝑒𝑥𝑝 =
(∆𝑃)

(
𝐿

𝑑
)(

𝜌𝑣2

2
)
                               (6)  

where: ∆𝑃 is pressure drop (Pas), 𝑣 is velocity 
(m/sec). 

 
2.3. ANN- Support Vector Regression (SVR) 
 

Vapnik [29] have proposed the machine learning 
method known as SVR. The flow diagram of the SVR 
model is mentioned in Fig. 3. The SVR is a statistical 
technique that employs the notion of minimum risk 
of the structure and reduces the upper limit general 
error as opposed to the neural network's approach 
of minimising prediction error on training data. This 
model was first considered for solving the 
classification problems and then considered for 
prediction problems by establishing the Vapnik ε-
insensitive function (Cortes, and Vapnik, [30]). 

In SVR, the function 𝑓(𝑥) computes with the 
relation of inputs 𝑋 = {𝑥1, 𝑥2, 𝑥3 … . . 𝑥𝑛} and targets 
𝑌 = {𝑦1, 𝑦2, 𝑦3 … . . 𝑦𝑛}, where 𝑥𝑖 ∈ 𝑅𝑛,  𝑦𝑖 ∈ 𝑅. 
Similar to this, because the cost function for creating 
the model rejects any training data that is close to 
the model prediction, the model created by SVR only 
depends on a subset of the training data. Suykens 
and Vandewalle [31] have presented the least-
squares support vector machine, a different SVR 
variant.  
Training of the SVR is as follows:  

minimize   
1

2
‖𝑤‖2                              (7)                                                                                                                           

subject to |𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏| ≤ 𝜀               (8)                                                                                                        

where: 𝑥𝑖 is a training sample with target value 𝑦𝑖. 
The values, 〈𝑤, 𝑥𝑖〉 + 𝑏 is the prediction, and 𝜀 is a 
free parameter.   

The discrepancy between the experimental and 
anticipated values should be as small as possible in a 
suitable network. In general, the RMSE, which is 
shown in Eq. (9), is used to define performance. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐶𝑝,𝑝𝑟 − 𝐶𝑝,𝑒𝑥)

2𝑛
𝑖               (9)                                                                                        



S. Mesfin et al. / Applied Engineering Letters Vol.10, No.1, 1-13 (2025) 

 
 

6 

𝑅 = √1 −
∑ (𝐶p,ex (𝑖)−𝐶𝑝,𝑝𝑟 )

2𝑛
𝑖=1

1

𝑁
∑ (𝐶p,ex (𝑖))

2𝑛
𝑖=1

              (10)                                   

 

Fig. 3. The flow diagram of the SVR model 
 

3. RESULTS AND DISCUSSION 
 
3.1. Nusselt Number  
 

Water and hybrid nanofluids' fixed mass flow 
rates were used to flow water and nanofluids in the 
FPC. The mass flow rate was adjusted with a pump. 
Every 30 minutes, the flow rate was a little 
increased. The mass flow rate varies from 0.56 to 
1.35 L/min for time zone 1 and from 1.24 to 0.782 
L/min for time zone 2. Two regions, commonly 
referred to as time zone-1 (09:00 hr to 13:00 hr) and 
time zone-2 (13:00 to 16:30), are separated by this 
nature. The mass flow rate is converted into 
Reynolds number (Re) through the Eq. (5). 

The range of Re for water is 195 < Re < 470.18, for 
0.048% vol. is 176.93 < Re < 426.52, for 0.096% vol. 
is 170.83 < Re < 411.82, for 0.144% vol. is 163.77 < 
Re < 394.8, for 0.192% vol. is 158.53 < Re < 382.17; 
for 0.24% vol. is 151.27 < Re < 364.66, respectively 
for time zone-1.  

The range of Re for water is 431.87 < Re < 272.36, 
for 0.048% vol. is 391.77 < Re < 247.07, for 0.096% 
vol. is 378.26 < Re < 238.55, for 0.144% vol. is 362.63 
< Re < 228.69, for 0.192% vol. is 351.03 < Re < 221.37, 
for 0.24% vol. is 334.95 < Re < 211.23, respectively 
for time zone-2. 

Fig. 4 is the Nusselt number versus daytime. As it 
is observed, the Nusselt number increases with 
daytime. For the entire day, from 09:00 hr to 13:00 
hr, the Nusselt number of nanofluids is increased and 
then from 13:30 hr to 16:30 hr, the Nusselt number 
is decreased. The Nusselt number (Nu) of hybrid 
nanofluids was evaluated in time zone-1 using Eq. 
(4), and the findings were presented in Fig. 5. The 
Nusselt number is greater for nanofluids compared 
to the base fluid at the same Reynolds numbers. As 
particles in a fluid rise, the Reynolds number lowers. 
This can be controlled by adjusting the flow rate and 
adding the viscosity of nanofluids. The Nusselt 
number in water increases with higher particle 
loadings and with higher Reynolds numbers. The Nu 

values are raised to 3.56%, 5.14%, 7.11%, 9.86%, and 
11.05% when the particle loadings are 0.048%, 
0.096%, 0.144%, 0.192%, and 0.24%. Additionally, 
the Nu values are further increased to 7.99%, 
11.63%, 14.97%, 17.70%, and 20.43% at Re values of 
151.27 and 364.66 over water. The primary cause for 
achieving larger Nusselt numbers is the increased 
value of knf. Increased particle loadings result in 
enhanced fluid-particle interaction, leading to 
elevated heat transfer rates. The fluid's exit 
temperature increased as the solar intensity 
gradually rose compared to the daytime, causing it 
to absorb more heat.  

 

Fig. 4. Nusselt number versus day time 

 

 
Fig. 5. Nusselt number versus Reynolds number for time 

zone-1 

 
The analysis of the Nu of hybrid nanofluids for 

time zone-2 is conducted using Eq. (4), and the 
findings are presented in Fig. 6. In time zone-2, the 
Reynolds number declined as a result of a decrease 
in the mass flow rate of the working fluids, which was 
caused by a reduction in solar radiation. The Nusselt 
number increases with higher particle loadings in the 
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water and decreases with lower Reynolds numbers. 
The Nu values increase by 7.77%, 11.21%, 13.08%, 
16.20%, and 19.02% when the particle loadings are 
0.048%, 0.096%, 0.144%, 0.192%, and 0.24%, 
respectively, compared to water. In addition, the Nu 
values decrease to 5.14%, 7.74%, 9.24%, 12.22%, 
and 14.08% when the Re values are 334.95 and 
211.23, respectively. 
 

 
Fig. 6. Nusselt number versus Reynolds number for time 

zone-2 

 
3.2. Heat Transfer Coefficient   
 

The heat transfer coefficient of hybrid nanofluids 
was evaluated in time zone-1 using Eq. (3), and the 
findings were presented in Fig. 7. The heat transfer 
coefficient of nanofluids was increased with higher 
particle loadings and also increased with higher 
Reynolds numbers. The heat transfer coefficient 
values are raised to 4.77%, 7.41%, 11.91%, 16.62%, 
and 20.27% when the particle loadings are 0.048%, 
0.096%, 0.144%, 0.192%, and 0.24%. The heat 
transfer coefficient values are further increased to 
9.25%, 14.04%, 20.12%, 24.93%, and 30.43% at Re 
values of 151.27 and 364.66 over water.  

The analysis of the heat transfer coefficient of 
hybrid nanofluids for time zone-2 is conducted using 
Eq. (3), and the findings are presented in Fig. 8. In 
time zone-2, the Reynolds number declined as a 
result of a decrease in the mass flow rate of the 
working fluids, which was caused by a reduction in 
solar radiation. The heat transfer coefficient values 
increase by 9.02%, 13.61%, 18.15%, 23.35%, and 
28.9% when the particle loadings are 0.048%, 
0.096%, 0.144%, 0.192%, and 0.24%, respectively, 
compared to water. In addition, the heat transfer 
coefficient values decreased to 6.36%, 10.07%, 

14.14%, 19.12%, and 23.56% when the Re values 
were 334.95 and 211.23, respectively. 

 

 
Fig. 7. Heat transfer coefficient versus Reynolds number 

for time zone-1 

 

 
Fig. 8. Heat transfer coefficient versus Reynolds number 

for time zone-2 

 
3.3. Friction Factor    
 

The friction factor of hybrid nanofluids was 
evaluated in time zone-1 using Eq. (6), and the 
findings were presented in Fig. 9. The friction factor 
of nanofluids increased with higher particle loadings 
and also increased with higher Reynolds numbers. 
The friction factor values are raised to 3.01%, 5.14%, 
6.05%, 8.19%, and 8.80% when the particle loadings 
are 0.048%, 0.096%, 0.144%, 0.192%, and 0.24%. 
The friction factor values are further increased to 
7.26%, 10.93%, 12.4%, 14.61%, and 15.34% at Re 
values of 151.27 and 364.66 over water. 

The analysis of the friction factor of hybrid 
nanofluids for time zone-2 is conducted using Eq. (6), 
and the findings are presented in Fig. 10. In time 
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zone-2, the Reynolds number declined as a result of 
a decrease in the mass flow rate of the working 
fluids. The friction factor values increase by 5.94%, 
8.64%, 12.02%, 13.37%, and 14.72% when the 
particle loadings are 0.048%, 0.096%, 0.144%, 
0.192%, and 0.24%, respectively, compared to 
water. In addition, the friction factor values 
decreased to 3.41%, 6.39%, 8.94%, 10.22%, and 
11.50% when the Re values were 334.95 and 211.23, 
respectively.  

 

 
Fig. 9. Friction factor versus Reynolds number for time 

zone-1 

 

 
Fig. 10. Friction factor versus Reynolds number for time 

zone-2 

 
Based on the experimental data, Nusselt number 

regression equations are proposed for two time 
zones.  
Time zone-1: 
𝑁𝑢 = 2.089 + 1.0028𝑅𝑒 − 0.2731𝜙 + 0.011𝑅𝑒𝜙      (11) 

 
Time zone-2:  
𝑁𝑢 = 1.957 + 0.003𝑅𝑒 − 1.0145𝜙 + 0.014𝑅𝑒𝜙         (12) 

Based on the experimental data, friction factor 
regression equations are proposed for two time 
zones.  
Time zone-1: 
𝑓 = 0.4313 − 0.0007𝑅𝑒 + 0.1268𝜙 − 0.0009𝑅𝑒𝜙    (13) 

 
Time zone-2:  
𝑓 = 0.3781 − 0.0005𝑅𝑒 + 0.1145𝜙 − 0.0007𝑅𝑒𝜙    (14) 

 
3.4. ANN-Support Vector Regression Results  
 
3.4.1. Nusselt Number  
 

The experimentally obtained Nusselt number 
data is used for the SVR analysis. The Nusselt number 
is taken as output data, whereas the particle volume 
loadings and Reynolds number are taken as input 
data. Usually, among the whole data, some portion 
of the data is used for the algorithm training, and 
some portion of the data is used for testing the 
algorithm. In this case, for the SVR analysis, 70% of 
the data is used to train the algorithm, and 30% of 
the data is used to test the algorithm. The 
performance curve is mentioned in Fig. 11(a), where 
we can find the best value. Once the iteration has 
been done in the algorithm, the algorithm will show 
the best performance value through the mean 
square error. The best validation performance was 
observed as 0.0013234 at epoch 30 in this case. 
Through the output data, the error between the 
values can be estimated. The error is the difference 
between target values and output values. Fig. 11(b) 
represents the error histogram of the Nusselt 
number. It can be easily observed that the thick pale-
yellow line stands for the zero error. Under the best 
validation, the error of the Nusselt number is 
obtained as 0.001658 at 20 Bins. Under the best 
validation performance, the mean square error for 
the trained data, validation data, and test data are 
found to be 0.001, 0.0013, and 0.0013, respectively. 

 

 
Fig. 11. (a) Performance curve, and (b) error histograms 

of Nusselt number 

 
The experimental Nusselt number values versus 

the algorithm output values are plotted like a 
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diagonal plot. Here, we can observe the deviation 
between the values. In another way, these plots are 
called as Pearson correlation coefficient (R2) plots. 
The Pearson correlations plots are shown in Fig. 12 
for the trained data, validation data, test data, and 
all data. From the figures, the R2 value is observed as 
0.99572, 0.99659, 0.99663, and 0.99487, 
respectively. 

 

 
Fig. 12. Correction coefficient of Nusselt number 

 
3.4.2. Heat Transfer Coefficient  
 

The experimentally obtained heat transfer 
coefficient is used for the SVR analysis. The particle 
volume loadings and Reynolds number are taken as 
input data, whereas the heat transfer coefficient is 
taken as output data. In general, some portion of the 
data is used for training purposes, and some portion 
of the data is used for testing purposes in the 
algorithm. For the present study, SVR analysis, 70% 
of the data is used for training purposes, and 30% of 
the data is used for algorithm testing purposes. The 
performance curve is mentioned in Fig. 13(a), in 
which we can find the best value. Once the iteration 
has been done in the algorithm, through the mean 
square error, the algorithm will show the best 
performance value. In this case, the best validation 
performance was observed as 24.6253 at epoch 5. 
Through the output data, the error between the 
values can be estimated. The error is the difference 
between target values and output values. Fig. 13(b) 
represents the error histogram of the heat transfer 
coefficient. It can be easily observed that the thick 
pale-yellow line stands for the zero error. Under the 
best validation, the error of the Nusselt number is 

obtained as -0.2588 at 20 Bins. Under the best 
validation performance, the mean square error for 
the trained data, validation data, and test data are 
found to be 10.74, 24.62, and 36.23, respectively. 

 

 
Fig. 13. Performance curve, and (b) error histograms of 

heat transfer coefficient 

 
The experimental heat transfer coefficient values 

versus the algorithm output values are plotted like a 
diagonal plot. Here, we can observe the deviation 
between the values. The Pearson correlations plots 
are shown in Fig. 14 for the trained data, validation 
data, test data, and all data. From the figures, the R2 
value is observed as 0.99674, 0.99262, 0.98439, and 
0.9947, respectively. 

 

 
Fig. 14. Correlation coefficient of heat transfer 

coefficient 

 
3.4.3. Friction Factor  
 

The experimentally obtained friction factor was 
considered for the SVR analysis. The friction factor is 
considered as output data, whereas the particle 
volume loadings and Reynolds number are taken as 
input data. Usually, among the whole data, some 
portion of the data is used for the algorithm training, 
and some portion of the data is used for testing the 
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algorithm. In this case, for the SVR analysis, 70% of 
the data is used to train the algorithm, and 30% of 
the data is used to test the algorithm. The 
performance curve is mentioned in Fig. 15(a), in 
which we can find the best value. Once the iteration 
has been done in the algorithm, the algorithm will 
show the best performance value through the mean 
square error. In this case, the best validation 
performance was observed as 6.7447e-08 at epoch 
18. Through the output data, the error between the 
values can be estimated. The error is the difference 
between target values and output values. Fig. 15(b) 
represents the error histogram of the friction factor. 
It can be easily observed that the thick pale-yellow 
line stands for the zero error. Under the best 
validation, the error of the friction factor is obtained 
as 0.000164 at 20 Bins. Under the best validation 
performance, the mean square error for the trained 
data, validation data, and test data are found as 
1.4054e-6, 6.7447e-6, and 4.3892e-6, respectively. 
 

 
Fig. 15. Performance curve, and (b) error histograms of 

friction factor 

 

 
Fig. 16. Correlation coefficient of friction factor 

 
The experimental friction factor values versus the 

algorithm output values are plotted like a diagonal 
plot. Here, we can observe the deviation between 

the values. The Pearson correlations plots are shown 
in Fig. 16 for the trained data, validation data, test 
data, and all data. From the figures, the R2 value is 
observed as 0.99978, 0.99812, 9.99926, and 
0.99955, respectively. 
 
4. CONCLUSION 
 

Experimental studies have been conducted to 
evaluate the Nusselt number, heat transfer 
coefficient, and friction factor of FPC working with 
Al2O3-CuO/water hybrid nanofluids. Subsequently, 
an Artificial Neural Network - Support Vector 
Regression method was employed to predict the 
values that were experimentally obtained. The 
experiments were performed between 09:00 and 
16:30 hrs, with volume loadings of 0.048%, 0.096%, 
0.144%, 0.192%, and 0.24%, respectively. The time 
period from 09:00 hr to 16:30 hr was separated into 
two time zones: time zone 1 (09:00 to 13:00) and 
time zone 2 (13:00 to 16:30). It is indicated that, at 
time zone 1, at 13:00 hrs, 0.24% vol. and a Reynolds 
number of 364.66, the Nusselt number is increased 
by 20.43%, over the base fluid. Similarly, in time zone 
2, at 16:30, with a volume fraction of 0.24% and at a 
Reynolds number of 211.23, the Nusselt number is 
increased by 14.08% compared to the base fluid. For 
the time zone-1, at 13:00 hrs, with 0.24% vol. and a 
Reynolds number of 364.66, the friction factor is 
increased by 15.34% over the base fluid. For the time 
zone-2, at 16:30, at 0.24% vol. and a Reynolds 
number of 211.23, the friction factor is raised by 
11.50% against the base fluid.  

In this study, it is noticed that, with the use of 
hybrid nanofluids in an FPC system, the overall 
efficiency is enhanced when compared to water in 
the FPC system. Both the heat transfer coefficient 
and friction factor are enhanced by using the hybrid 
nanofluids in an FPC system, but compared to the 
enhancement of heat transfer, the friction factor 
enhancement is negligible.  

The obtained data is predicted using the ANN-
SVR algorithm. The utilised SVR technique effectively 
predicts the values that closely correspond to the 
experimental data. The correlation coefficients 
obtained for the Nusselt number, heat transfer, and 
friction factor are 0.99497, 0.9947, and 0.99955, 
respectively. 

 
APPENDIX: UNCERTAINTY ANALYSIS 
 

Uncertainty of the measurements was analysed 
through the Coleman and Steel [32] procedure. The 
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maximum values of various parameters are 
mentioned in Table 3.  

 

Table 3. The uncertain values of various parameters 

 
Nusselt number 

 
𝛥𝑄𝑜

𝑄𝑜
= [{

𝛥𝑚̇

𝑚̇
}

2
+ {

𝛥𝑇𝑜

𝑇𝑜
}

2
+ {

𝛥𝑇𝑖

𝑇𝑖
}

2
]

0.5

                    (a1) 

𝛥𝑄𝑜

𝑄𝑜
= [{

3.32×10−4

0.0225
}

2

+ {
0.1

49.8
}

2

+ {
0.1

47.5
}

2

]
0.5

= 0.0423  (a2) 

𝛥𝑄𝑜

𝑄𝑜
= [2.187 × 10−4 + 4.032 × 10−6 + 4.432 ×

10−6]0.5                                                                    (a3) 

𝛥𝑄𝑜

𝑄𝑜
= 0.01501 = 1.501%                                   (a4) 

 
∆𝑁𝑢

∆𝑁𝑢
= [(

∆ℎ

ℎ
)

2
+ (

∆𝑑𝑖

𝑑𝑖
)

2
]

0.5

                                  (a5) 

∆ℎ

ℎ
= 𝐴𝑖 [{

∆𝑄𝑜

𝑄𝑜
}

2
+ {

∆𝑇𝑤

𝑇𝑤
}

2
+ {

∆𝑇𝑓

𝑇𝑓
}

2

+

{
∆[𝑙𝑛(𝑑𝑜 𝑑𝑖⁄ )]

𝑙𝑛(𝑑𝑜 𝑑𝑖⁄ )
}

2
]

0.5

                                                 (a6) 

∆ℎ

ℎ
= [{0.01501}2 + {

0.1

89.9
}

2
+ {

0.1

48.65
}

2
+

{
0.00007

0.1514
}

2
]

0.5

                                                        (a7) 

∆ℎ

ℎ
= [0.0002253 + 1.237 × 10−6 + 4.225 ×

10−6 + 4.623 × 10−4]0.5                                    (a8) 

 ∆ℎ

ℎ
= 0.026326                                                    (a9) 

 
∆𝑁𝑢

∆𝑁𝑢
= [(0.026326)2 + (

0.00007

0.01
)

2
]

0.5

             (a10) 

 

∆𝑁𝑢

∆𝑁𝑢
= [0.000691 + 0.000049]0.5 = 0.0272 =

2.72%                                                                (a11) 

 
Friction factor  

∆𝑅𝑒

𝑅𝑒
= [(

∆𝑚̇

𝑚̇
)

2
+ (

∆𝑑𝑖

𝑑𝑖
)

2
]

0.5

                                   (a12) 

∆𝑅𝑒

𝑅𝑒
= [(

3.32×10−4

0.0225
)

2

+ (
0.00007

0.01
)

2
]

0.5

                  (a13) 

∆𝑅𝑒

𝑅𝑒
= [2.187 × 10−4 + 0.000049]0.5               (a14) 

∆𝑅𝑒

𝑅𝑒
= 0.0162 = 1.62%                                        (a15) 

∆(∆𝑃)

∆𝑃
=

0.001

6.96
= 1.436 × 10−4                              (a16) 

 
∆𝑓

𝑓
= 𝑓 [{

∆(∆𝑃)

(∆𝑃)
}

2
+ {

∆𝐿

𝐿
}

2
+ {

3∆𝑑𝑖

𝑑𝑖
}

2
+ {

2∆𝑅𝑒

𝑅𝑒
}

2
]

0.5

       

                                                                                    (a17) 

 
∆𝑓

𝑓
= [{1.436 × 10−4}2 + {

0.001

5
}

2
+ {3 ×

0.00007

0.01
}

2
+ {2 × 0.0162}2]

0.5

                                (a18) 

∆𝑓

𝑓
= [2.062 × 10−8 + 4 × 10−7 + 0.000441 +

0.001049]0.5                                                             (a19) 

∆𝑓

𝑓
= 0.0351 = 3.51%                                            (a20) 
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