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Abstract:  
Machining processes are crucial in the production of various products across 
different industries. The accuracy, lifespan, and cost of these products 
significantly depend on the machining processes. This research introduces a 
novel method for selecting the optimal solution for machining processes. The 
proposed method, named PSI-R-PIV, is a hybrid of three methods preference 
selection index (PSI), ranking of the attributes and alternatives (R), and 
proximity indexed value (PIV). PSI, R, and PIV are all techniques used to rank 
options to determine the best among the available choices. Moreover, PSI 
and R have an additional function of calculating weights for the criteria. 
Therefore, using PSI-R-PIV to rank options for each machining process results 
in four sets of rankings: one by PSI, one by R, and two by PIV. In the PIV 
method, the weights for the criteria are calculated using the PSI and R 
methods. The ranking method using PIV with weights calculated by the PSI 
and R methods is named the PSI-PIV and R-PIV methods respectively. The four 
methods in the PSI-R-PIV combination include PSI, R, PSI-PIV, and R-PIV, and 
have been utilized to rank options in various machining processes. The results 
indicate that the PSI-PIV method offers high accuracy and is recommended 
for selecting the best option among the available choices in machining 
processes. 
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1. INTRODUCTION 
 

Mechanical machining plays a pivotal role in 
modern industry, directly influencing the quality and 
efficiency of products across various sectors. 
Selecting the optimal machining method among 
numerous alternatives, such as turning, milling, 
drilling, grinding, etc., is critically important [1-3]. 
Each machining option impacts product accuracy, 
production cost, environmental effects, and 
equipment requirements differently [4]. Choosing 
the correct machining method not only ensures high 
product quality but also optimizes production costs, 
minimizes environmental impact, and makes 
efficient use of available equipment. This 
necessitates careful consideration and the 
application of precise evaluation and ranking 
methods to make the best decision [5-8]. 

In addition to using ranking methods for the 
options, it is also necessary to employ weighting 
methods for the criteria [9]. However, this can be 
quite challenging for users due to the wide variety of 
ranking methods and weighting methods available 
[10,11]. The choice of ranking method and weighting 
method significantly impacts the final decision 
regarding the best option among the many 
alternatives [12]. 

This research introduces a novel method for 
ranking machining options to determine the optimal 
choice. The proposed method, named PSI-R-PIV, is a 
hybridization of three distinct methods: PSI, R, and 
PIV. Each of these methods, PSI, R, and PIV, serves 
the purpose of ranking options to identify the best 
one. Additionally, PSI and R methods have the 
function of calculating weights for criteria. Thus, 
using the PSI-R-PIV hybrid model eliminates the 
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need for any additional method to compute criteria 
weights. This is the first novel aspect of this research. 
The weights of the criteria, calculated using PSI and 
R methods, will be used to rank the options via the 
PIV method. Consequently, integrating the three 
methods PSI, R, and PIV for option ranking generates 
four sets of rankings: one performed by PSI, one by 
R, one by PIV when the criteria weights are 
calculated by PSI (termed PSI-PIV), and one by PIV 
when the criteria weights are calculated by R 
(termed R-PIV). The ability to create four sets of 
option rankings by combining the three methods PSI, 
R, and PIV is a distinct feature of PSI-R-PIV compared 
to all existing methods and represents another 
significant novelty of this study compared to 
previous research. This research is driven by the 
urgent need to enhance the efficiency and quality of 
mechanical processing. The selection of the optimal 
processing option is currently limited by the diversity 
and complexity of evaluation methods. The 
proposed PSI-R-PIV method aims to provide a 
comprehensive solution, helping manufacturing 
enterprises make accurate and effective decisions, 
thereby reducing costs, increasing productivity, and 
enhancing market competitiveness. 

Chapter 2 of this paper provides a concise review 
of recent literature on the application of option 
ranking methods in machining. A summary of the 
steps involved in applying the PSI, R, and PIV 
methods is presented in Chapter 3. The PSI-R-PIV 
hybrid model, combining the three independent 
methods, is detailed in Chapter 4. Chapter 5 
describes the application of the PSI-R-PIV model to 
rank machining options in various machining 
methods. Recommendations on which method to 
use for ranking options in the field of cutting 
machining are provided in the conclusion, which is 
the final section of this paper. 

 
2. LITERATURE REVIEW 
 

Selecting the optimal option among various 
machining process alternatives significantly impacts 
both the economic and technical efficiency of these 
processes. Therefore, it is essential to apply 
mathematical models to ensure that the selection is 
not influenced by the subjectivity of the decision-
maker. Numerous multi-criteria decision-making 
(MCDM) methods have been applied in this field in 
recent studies. 

The ranking of alternatives through functional 
mapping of criterion sub-intervals into a single 
interval (RAFSI) method was utilized to select the 

milling parameters for SNCM439 material to 
simultaneously ensure minimal surface roughness 
and maximum cutting productivity, where the 
weights of these two criteria were calculated using 
three methods: equal weight, entropy weight, and 
method based on the removal effects of criteria 
(MEREC) weight [13]. The selection of metal milling 
parameters to ensure minimal surface roughness, 
minimal energy consumption, and maximum cutting 
productivity was conducted using the best-worst 
method (BWM) method, where criteria weights 
were calculated using the entropy method [14].  

The technique for order preference by similarity 
to ideal solution (TOPSIS), multiobjective 
optimization on the basis of ratio analysis (MOORA), 
additive ratio assessment  (ARAS), weighted 
aggregates sum product assessment (WASPAS), and 
multi-attributive border approximation area 
comparison (MABAC) methods were applied to 
optimize the photochemical milling process, aiming 
to maximize material removal rate while minimizing 
surface roughness, undercut, and etch factor. The 
optimal machining conditions were determined 
based on these methods. In this study, the weights 
of the four criteria were determined using four 
methods including criteria importance through 
inter-criteria correlation (CRITIC), MEREC, entropy, 
and equal weights [15]. The weighted sum method 
(WSM), weighted product model (WPM), WASPAS, 
MOORA, TOPSIS, evaluation based on distance from 
average solution (EDAS), ARAS, and complex 
proportional assessment (COPRAS) methods were all 
used to determine the milling method that ensures 
both minimal surface roughness and maximum 
cutting productivity. In this research, the weights for 
surface roughness and cutting productivity were 
calculated using two different methods: standard 
deviation weight method and entropy weight 
method [16], etc. 

In [17], the TOPSIS and WASPAS methods were 
both employed to select the metal turning option 
that ensures the smallest surface roughness, the 
least energy consumption, and the highest cutting 
productivity, with the criteria weights determined by 
the analytic hierarchy process (AHP) method. The 
ARAS method has been employed to determine the 
optimal values of cutting speed, feed rate, depth of 
cut, and tool type to simultaneously ensure the 
minimum surface roughness, the highest surface 
hardness of the workpiece, and the maximum 
cutting productivity in turning operations, where the 
weights of these three parameters have been 
calculated using the equal weights method [18]. To 
find a metal turning solution that simultaneously 
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ensures the minimum values of surface roughness, 
crater wear, flank wear, and the maximum tool life, 
the simple additive weighting (SAW), 
“visekriterijumska optimizacija i kompromisno 
resenje“ (VIKOR), TOPSIS, and elimination and choice 
expressing reality (ELECTRE) methods were 
concurrently used to determine the optimal 
machining conditions. In this study, the weights of 
the four parameters: surface roughness, crater wear, 
flank wear, and tool life were also calculated using 
the equal weights method [19]. The TOPSIS method 
has been employed to determine the optimal values 
of various parameters including workpiece diameter, 
workpiece hardness, tool hardness, cutting tool 
length, end cutting angle, side clearance angle, 
number of revolutions, and setup system in the 
turning process. The weights of these parameters 
were determined using an artificial neural network 
(ANN) [20]. In another research, the TOPSIS method 
was also utilized to identify the optimal values of 
process parameters to minimize vibration in the 
turning process, where the weights of the process 
parameters were determined by developing a 
regression model [21], etc. 

To find the optimal option for grinding SKD11 
steel with CBN grinding wheels, ensuring both the 
smallest surface roughness and the highest cutting 
productivity, the TOPSIS method was used to rank 
the options, and the entropy method was employed 
to calculate the weights for the two criteria of 
surface roughness and cutting productivity [22]. To 
determine the grinding option for tooth surfaces 
that ensures the smallest values for surface 
roughness, surface hardness reduction, and the 
thickness of the surface layer with reduced hardness, 
the TOPSIS method was also used for ranking, and 
the AHP method was used to calculate the criteria 
weights [23]. The TOPSIS method was additionally 
utilized to choose the metal grinding solution that 
ensures both the smallest surface roughness and the 
longest grinding wheel life. Here, the weights for 
these two criteria were calculated using the entropy 
method [24]. In [25], the multi atributive ideal-real 
comparative analysis (MAIRCA) method was used to 
select the grinding option that ensures the smallest 
surface roughness and the highest cutting 
productivity, with the entropy method being used to 
calculate the weights for these two parameters. Four 
methods TOPSIS, measurement alternatives and 
ranking according to compromise solution 
(MARCOS), evaluation by an area-based method of 
ranking (EAMR), and MAIRCA were collectively 
employed to select the metal grinding option that 
ensures both the smallest surface roughness and the 

highest cutting productivity. In this case, the weights 
for these two parameters were calculated using both 
the entropy and MEREC methods [26], etc. 

The TOPSIS method has been utilized to 
determine the optimal option for metal drilling, 
aiming to simultaneously achieve the smallest values 
for both surface roughness parameters (Ra and Rz) 
and the highest cutting productivity. In this research, 
the weights of the parameters were calculated using 
the entropy method [27]. To determine the optimal 
drilling option for carbon fiber reinforced plastic 
(CFRP) that ensures the smallest values for surface 
roughness, uncut carbon fibers, and delamination, 
the TOPSIS method was also used for ranking, and 
the entropy method was used to calculate the 
weights for the criteria [28]. To identify the optimal 
drilling option for Magnesium AZ91 alloy that 
ensures the smallest values for six parameters 
drilling time, entry burr height, exit burr height, 
entry burr thickness, exit burr thickness, and surface 
roughness, three methods, faire un choix adéquat 
(FUCA), TOPSIS, and COPRAS, were used for ranking 
the options, with the criteria weights being assigned 
by the decision-maker [29]. Three methods, grey 
relational analysis (GRA), WASPAS, and VIKOR, were 
employed to select the drilling option for glass-fiber-
reinforced composite (GFRP) that ensures the 
smallest values for delamination, cracking, fiber 
tearing, ovality, and surface roughness. In this 
research, the criteria weights were calculated using 
the AHP method [30], etc. 

Thus, it can be seen that MCDM methods have 
been extensively used to rank the options of 
machining processes. Some research uses a single 
MCDM method, while others use multiple MCDM 
methods simultaneously. However, in all the 
research mentioned above, in addition to using 
MCDM methods for ranking options, additional 
methods for calculating criteria weights are always 
required. This affects the user's confidence in the 
final chosen option because many studies have 
shown that the weight calculation method used 
significantly influences the ranking of options [10-
12]. If MCDM methods could be used without the 
need for additional weight calculation methods for 
the criteria, users would have greater confidence in 
their final decision on the selected option. This 
research employs the R, PSI, and PIV methods to 
rank machining options. All three of these methods 
are used for ranking options. Notably, with R and PSI, 
users do not need to use additional weight 
calculation methods for the criteria because these 
two methods calculate the criteria weights 
themselves. This is why PSI and R are used in this 
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research. Moreover, the criteria weights calculated 
by the R and PSI methods will be combined with the 
PIV method to rank the options. The PIV method is 
used because it is known for its ability to minimize 
rank reversal and to find the best option among 
multiple options without depending on the criteria 
weights [31,32]. Therefore, combining the three 
methods PSI, R, and PIV, to rank options will produce 
four different sets of results for each specific 
problem: one by applying PSI, one by applying R, one 
by applying PIV with criteria weights calculated by 
PSI, and one by applying PIV with criteria weights 
calculated by R. The combination of just three 
methods PSI, R, and PIV resulting in four outcomes 
for each problem is the most distinctive feature of 
this study compared to all previously published 
studies. 
 

3. MATERIALS AND METHODS 
 

The objective of this research problem is to 
identify the best option among the available 
alternatives. Therefore, it is essential to construct a 
matrix containing information about the options, 
including the number of options, the number of 
criteria for each option, and whether each criterion's 
value should be maximized or minimized. 

Assuming we need to find the best option among 
m alternatives, each characterized by n criteria, the 
first step is to construct a matrix as shown in Eq. (1). 
Let xij  be the value of criterion j for option i, with j = 
1 to n, and i = 1 to m. The letters B and C are used to 
describe criteria that should be maximized (B) and 
minimized (C), respectively. 

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑛

𝑥21 𝑥22 ⋯ 𝑥2𝑛

⋯ ⋯ ⋱ ⋯
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] (1) 

This study proposes the PSI-R-PIV hybrid model, 
combining three component methods: PSI, R, and 
PIV. Therefore, it is necessary to first summarize the 
sequence of steps for applying each individual 
method. 

Sequential optimization steps using PSI method 
[33]: 

Step 1: Normalize the data according to (2) and 
(3). 

𝑛𝑖𝑗 =
𝑥𝑖𝑗

𝑚𝑎𝑥(𝑥𝑖𝑗)
𝑖𝑗 𝑗 ∈ 𝐵 (2) 

𝑛𝑖𝑗 =
𝑚𝑖𝑛(𝑥𝑖𝑗)

𝑥𝑖𝑗
𝑖𝑗 𝑗 ∈ 𝐶 (3) 

Step 2: Calculate the normalized average value 
according to (4). 

𝑛 =
∑ 𝑛𝑖𝑗

𝑚
𝑖=1

𝑚
 (4) 

Step 3: Calculate priority values for each criterion 
according to (5). 

𝜑𝑗 = ∑ (𝑛𝑖𝑗 − 𝑛)
2𝑚

𝑖=1
 (5) 

Step 4: Calculate weights for each criterion 
according to (6). The weights of the criteria 
calculated in this step of the PSI method will be used 
to find the optimal solution using the PIV method. 
This linkage is referred to as the hybridization 
between PSI and PIV, named PSI-PIV. 

𝑤𝑗 =
1 − 𝜑𝑗

∑ (1 − 𝜑𝑗)𝑛
𝑗=1

 (6) 

Step 5: Calculate the score for each option 
according to (7). The optimal solution is the option 
with the highest score. 

𝜃𝑖 = ∑ 𝑛𝑖𝑗 ∙ 𝑤𝑗

𝑛

𝑗=1
 (7) 

Ranking options using the R method [34]: 
Step 1: Arrange the criteria in descending order 

of their importance. 
Step 2: Calculate weights for the rankings of the 

criteria using Eq. (8), where rj  represents the ranking 
value of the jth criterion. 

𝑤(𝑗) =
1

1 +
1
2

+ ⋯ +
1
𝑟𝑗

, 𝑗 = 1 ÷ 𝑛 
(8) 

Step 3: Calculate weights for the criteria using Eq. 
(9). The weights of the criteria calculated in this step 
of the R method will be used to find the optimal 
solution using the PIV method. This linkage is 
referred to as the hybridization between R and PIV, 
named R-PIV. 

𝑤𝑗 =  
𝑤(𝑗)

∑ 𝑤(𝑗)𝑛
𝑗=1

, 𝑗 = 1 ÷ 𝑛 (9) 

Step 4: Rank the options for each criterion. 
Step 5: Calculate weights for the rankings of the 

options using Eq. (10), where rt  is the ranking value 
of the tth option. 

𝜗(𝑡) =
1

1 +
1
2 + ⋯ +

1
𝑟𝑡

, 𝑡 = 1 ÷ 𝑚 (10) 

Step 6: Calculate weights for the rankings of the 
options using Eq. (11). 

ϑt =  
w(t)

∑ w(t)m
k=1

, t = 1 ÷ m  (11) 

Step 7: Calculate scores for each option using Eq.  
(12). The solution with the highest score is the 
optimal solution. 
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𝑆𝑖 = ∑ 𝑤𝑘
𝑗

∗ 𝜗𝑡
𝑖

𝑛

𝑗=1

, 𝑖 = 1 ÷ 𝑚  (12) 

Optimal solution procedure using the PIV method 
[31]: 

Step 1: Calculate normalized values using Eq. (13). 

𝑛𝑖𝑗 =  
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 
(13) 

Step 2: Calculate normalized values considering 
the weights of the criteria using Eq. (14), where wj  is 
the weight of criterion j. In this research, weights of 
the criteria will be calculated using both the PSI and 
R methods. 

𝑉𝑖𝑗 = 𝑤𝑗 × 𝑛𝑖𝑗  (14) 
Step 3: Calculate the weight proximity indices 

using Eq. (15) and (16). 

𝑢𝑖 = 𝜈max − 𝜈𝑖 𝑖𝑓 𝑗 ∈ 𝐵 (15) 

𝑢𝑖 = 𝜈𝑖 − 𝜈min 𝑖𝑓 𝑗 ∈ 𝐶 (16) 

Step 4: Calculate scores for the solutions using Eq. 
(17). The optimal solution is the solution with the 
smallest score. 

1

n

i i

j

d u
=

=  (17) 

 
4. PSI-R-PIV HYBRID MODEL 
 

Based on the application steps of the PSI, R, and 
PIV methods as discussed above, the hybrid model 
combining these three methods is illustrated in Fig. 
1.  

The application of the PSI-R-PIV hybrid model is 
summarized as follows: 

- Sequentially apply the 5 steps of the PSI 
method to identify the best solution among the 
available options using the PSI method. 

- Sequentially apply the 7 steps of the R method 
to identify the best solution among the available 
options using the R method. 

- Apply the 4 steps of the PIV method and the 
first 4 steps of the PSI method (to calculate criteria 
weights using the PSI method) to find the best 
solution through the PSI-PIV hybridization. 

- Apply the 4 steps of the PIV method and the 
first 3 steps of the R method (to calculate criteria 
weights using the R method) to find the best solution 
through the R-PIV hybridization. 

 

 
Fig. 1. PSI-R-PIV Hybrid Model 

 
It is observed that implementing the PSI-R-PIV 

method is essentially the simultaneous 
implementation of three methods: PSI, R, and PIV. 
All three component methods are simple 
mathematical methods, easy to use, and have been 
applied in many researches, so it can be seen that 
the implementation of the PSI-R-PIV method does 
not encounter any difficulties. The novelty of PSI-R-
PIV is simply the clever utilization of the weights of 
the criteria calculated by the PSI and R methods to 
serve the ranking of alternatives using the PIV 
method. When applying the PSI-R-PIV method, all 
calculations can be performed manually or using 
Excel. 

 

5. RESULTS AND DISCUSSION 
 

The accuracy evaluation of the PSI-R-PIV 
model is conducted in three different cases 
related to three common mechanical processing 
methods. 

Case 1: Ranking of 9 milling process options, 
each comprising 1 criterion of type B and 1 
criterion of type C. 

Case 2: Ranking of 25 turning process options, 
each comprising 1 criterion of type B and 2 
criteria of type C. 

Case 3: Ranking of 17 drilling process options, 
each defined by six criteria, all of which are of 
type C. 
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Case 1 
 

In this case, the task is to select the best 
milling process option. Table 1 summarizes the 
data from nine experiments of a milling process 
where four parameters were varied: cutting 
speed (vc), feed rate (f), axial cutting depth (ar), 
and radial cutting depth (ap). Each experiment 
measured surface roughness (Ra) and material 

removal rate (MRR) [35]. The objective is to identify 
the best experiment among the nine, where Ra is 
minimized and MRR is maximized. This task has 
previously been performed using VIKOR, MABAC, 
combined compromise solution (COCOSO), MAIRCA, 
and range of value (ROV) methods [35]. The PSI-R-
PIV hybrid model will be used to perform this task in 

this research. 
 

 

Table 1. Experimental data for milling experiments [35] 

Exp. vc (m/min) f (mm/rev) ar (mm) ap (mm) Ra (m) MRR (mm3/min) 

M1 80 0.05 4 0.1 0.97 25.465 

M2 80 0.10 8 0.3 1.085 305.577 

M3 80 0.15 12 0.5 2.032 1145.916 

M4 100 0.05 8 0.5 0.746 318.31 

M5 100 0.10 12 0.1 0.609 190.986 

M6 100 0.15 4 0.3 1.001 286.479 

M7 120 0.05 12 0.3 0.858 343.775 

M8 120 0.10 4 0.5 0.326 381.972 

M9 120 0.15 8 0.1 1.083 229.183 

 
First, this task is performed using the PSI method. 

Step 1 of the PSI method calculates normalized 
values as shown in Table 2. 

Steps 2, 3, and 4 are sequentially applied to 
calculate the values of n, φj, and weights wj, which 
are summarized in Table 3. Note that the weights of 
the criteria calculated by the PSI method will be used 
to combine with the PIV method in the next part of 
this article. 
 
Table 2. Normalized values in the PSI method 

Exp. Ra MRR  

M1 0.3361 0.0222 

M2 0.3005 0.2667 

M3 0.1604 1.0000 

M4 0.4370 0.2778 

M5 0.5353 0.1667 

M6 0.3257 0.2500 

M7 0.3800 0.3000 

M8 1.0000 0.3333 

M9 0.3010 0.2000 
 
Table 3. Some parameters in PSI 

 Ra MRR 

n 0.4195 0.3130 

j 0.4633 0.5986 

wj 0.5721 0.4279 
 

The scores of the experiments are calculated in 
step 5, resulting in Table 4. The last column of this 

table also lists the rankings of the experiments based 
on their scores. 

The ranking of milling experiments using the R 
method follows next. First, the criteria rankings are 
sorted, which means performing step 1. According to 
some researches, for milling processes evaluated by 
Ra and MRR, Ra should be given more importance 
[36,37]. This means Ra is ranked 1st and MRR is 
ranked 2nd. 
 

Table 4. Scores and rankings of the experiments 

Exp. i rank 

M1 0.2018 9 

M2 0.2860 7 

M3 0.5197 2 

M4 0.3689 4 

M5 0.3776 3 

M6 0.2933 6 

M7 0.3457 5 

M8 0.7147 1 

M9 0.2578 8 
 

Steps 2 and 3 of the R method have been 
sequentially applied and the weights of Ra and MRR, 
corresponding to 0.6 and 0.4 respectively, have been 
calculated. Note that these weight values of Ra and 
MRR, besides determining the rankings of 
experiments using the R method, will also be used to 
combine with the PIV method in the next part of this 
article. 

Step 4 has ranked the experiments for each 
criterion as shown in Table 5. 
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Table 5. Rankings of experiments for each criterion 

Exp. Ra MRR  

M1 5 9 

M2 8 5 

M3 9 1 

M4 3 4 

M5 2 8 

M6 6 6 

M7 4 3 

M8 1 2 

M9 7 7 
 

Steps 5 and 6 have sequentially applied to 
calculate the weights of the rankings of experiments 
as shown in Table 6. 

The scores of each experiment have been 
calculated in step 7, summarized in Table 7. The last 
column of this table also lists the rankings of the 
experiments based on their scores. 
 
Table 6. Weights of rankings of experiments 

Exp. Ra MRR  

M1 0.0943 0.0761 

M2 0.0792 0.0943 

M3 0.0761 0.2153 

M4 0.1174 0.1033 

M5 0.1435 0.0792 

M6 0.0879 0.0879 

M7 0.1033 0.1174 

M8 0.2153 0.1435 

M9 0.0830 0.0830 

SUM 1 1 
 

So, the ranking of the milling experiments using 
the R method has concluded. Next, this task will be 
carried out using the PIV method in two scenarios: 
one where the criteria weights were calculated using 
the PSI method, and another where the criteria 
weights were calculated using the R method. First, 
the weight values of Ra and MRR calculated using 
the PSI method will be utilized. 

Applying step 1 of the PIV method has normalized 
values as synthesized in Table 8. 

Applying step 2 of PIV has computed Vij values, ui 
values calculated in step 3, and scores of the 
experiments calculated in step 4. All these values 
have been synthesized in Table 9. The final column 
of this table also consolidates the ranking of the 
experiments based on their scores. 

 
Table 7. Scores and rankings of milling experiments 

Exp. Si rank 

M1 0.0870 7 

M2 0.0852 8 

M3 0.1318 2 

M4 0.1118 4 

M5 0.1178 3 

M6 0.0879 6 

M7 0.1090 5 

M8 0.1866 1 

M9 0.0830 9 
 

Thus, the ranking of milling experiments using the 
PIV method with weights of Ra and MRR calculated 
by the PSI method has also been conducted similarly. 
Fig. 2 summarizes the rankings of milling 
experiments when ranked by methods in this 
research including PSI, R, PSI-PIV, R-PIV, VIKOR, 
MABAC, COCOSO, MAIRCA, and ROV [35]. 
 
Table 8. Normalized values in the PIV method 

Exp. Ra MRR  

M1 0.3038 0.0183 

M2 0.3399 0.2192 

M3 0.6365 0.8220 

M4 0.2337 0.2283 

M5 0.1908 0.1370 

M6 0.3136 0.2055 

M7 0.2688 0.2466 

M8 0.1021 0.2740 

M9 0.3392 0.1644 

 
 

Table 9. Some parameters in PIV, scores, and rankings of milling experiments 

Exp. 
Vij ui 

di rank 
Ra MRR Ra MRR 

M1 0.1738 0.0078 0.1154 0.3439 0.4593 9 

M2 0.1944 0.0938 0.1360 0.2579 0.3939 7 

M3 0.3642 0.3517 0.3057 0.0000 0.3057 2 

M4 0.1337 0.0977 0.0753 0.2540 0.3293 3 

M5 0.1091 0.0586 0.0507 0.2931 0.3438 5 

M6 0.1794 0.0879 0.1210 0.2638 0.3847 6 

M7 0.1538 0.1055 0.0953 0.2462 0.3415 4 

M8 0.0584 0.1172 0.0000 0.2345 0.2345 1 

M9 0.1941 0.0703 0.1357 0.2814 0.4170 8 
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Fig. 2. Rankings of options in Case 1 

 
It has been observed that the rankings of 

experiments are not entirely consistent when 
ranked using different methods. This has been 
reported in numerous studies as each MCDM 
method has been conducted with a different 
approach [32,38]. In this case, all nine methods, 
including PSI, R, PSI-PIV, R-PIV, VIKOR, MABAC, 
COCOSO, MAIRCA, and ROV, identified M8 as the 
best experiment among the nine surveyed 
experiments. Thus, in terms of finding the best 
experiment, all nine methods are equally effective. It 
was also observed that the ranking of some 
experiments was consistently determined when 
evaluated by several different methods. M3 was 
consistently ranked second when using the PSI, R, 
and PSI-PIV methods. M4 was consistently ranked 3rd 
when using the PSI-PIV, MABAC, MAIRCA, and ROV 
methods. M6 was always ranked 6th when using the 
PSI, R, PSI-PIV, and R-PIV methods. M2 was always 
ranked 7th, M9 always ranked 8th, and M1 always 
ranked 9th when ranked by the PSI, PSI-PIV, and R-
PIV methods. However, as shown in Fig. 2, the 
rankings of some other experiments also showed 

significant differences when ranked by different 
methods in the PSI-R-PIV combination. To 
comprehensively evaluate the performance of the 
proposed methods, this research uses Spearman's 
rank correlation coefficient [32]. This coefficient is 
calculated according to Eq. (18), where Di is the 
difference in the ranking of option i when ranked by 
different methods. 

𝑆 = 1 −
6𝐷𝑖

2

𝑚(𝑚2 − 1)
 (18) 

The application of (18) has calculated the 
Spearman correlation coefficient between PSI-R-PIV 
combination methods and other methods as shown 
in Table 10. 

The average Spearman coefficient between PSI, R, 
PSI-PIV, R-PIV methods compared to VIKOR, MABAC, 
COCOSO, MAIRCA, and ROV methods respectively 
are 0.54998, 0.49332, 0.65002, and 0.51998. Thus, in 
this case, among the four methods in the PSI-R-PIV 
combination, the performance decreases in the 
order of PSI-PIV > PSI > R-PIV > R.

 
Table 10. Spearman correlation coefficient in Case 1 

  VIKOR MABAC COCOSO MAIRCA ROV Average 

PSI 0.5167 0.5333 0.6333 0.5333 0.5333 0.54998 

R 0.4667 0.4833 0.5500 0.4833 0.4833 0.49332 

PSI-PIV 0.5167 0.4833 0.6333 0.4833 0.4833 0.65002 

R-PIV 0.6500 0.6167 0.7500 0.6167 0.6167 0.51998 

Case 2 
 

In this case, the combination PSI-R-PIV is used to 
rank 25 experiments of the metal machining process 
denoted as T1, T2,..., T25 in Table 11. Each 
experiment varied five parameters: tool nose radius 
(rε), tool shank length (L), spindle speed (nw), feed 

rate (fd), and cutting depth (ap). Each experiment 
also measured two Type C criteria including surface 
roughness (Ra), roundness error (RE), and one Type 
B criterion, cutting efficiency (Q). The data from 
these 25 experiments were used in a published 
research where experiment rankings were 
determined using the FUCA method with four 
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different sets of criterion weights. These 
combinations of the FUCA method with different 
criterion weights are denoted as FUCA 1, FUCA 2, 
FUCA 3, and FUCA 4 [39]. 

Ranking of the experiments in this case using the 
PSI-R-PIV combination was performed similarly to 

Case 1. Fig. 3 illustrates the rankings of the turning 
experiments when ranked using PSI-R-PIV (including 
PSI, R, PSI-PIV, R-PSI) and the FUCA 1, FUCA 2, FUCA 
3, and FUCA 4 methods from [39].

 
Table 11. Data on the turning experiments [39] 

Exp. 
r 

(mm) 
L 

(mm) 
nw 

(rev/min) 
fd 

(mm/rev) 
ap 

(mm) 

Ra 

(m) 

RE 

(m) 
Q 

(mm3/s) 

T1 0.25 25 421 0.08 0.2 0.823 8.333 10.581 

T2 0.25 30 587 0.094 0.4 0.657 7.667 34.669 

T3 0.25 35 659 0.112 0.6 0.459 9.333 69.562 

T4 0.25 40 788 0.124 0.1 0.992 11.000 15.349 

T5 0.25 45 926 0.316 1 0.817 13.667 459.640 

T6 0.4 25 587 0.112 0.1 0.523 14.000 10.327 

T7 0.4 30 659 0.124 1 0.449 13.333 128.359 

T8 0.4 35 788 0.316 0.2 0.873 15.333 78.228 

T9 0.4 40 926 0.08 0.4 0.645 11.667 46.546 

T10 0.4 45 421 0.094 0.6 0.456 10.667 37.298 

T11 0.6 25 659 0.316 0.4 0.992 16.667 130.844 

T12 0.6 30 788 0.08 0.6 0.764 13.000 59.414 

T13 0.6 35 926 0.094 0.1 0.654 8.333 13.673 

T14 0.6 40 421 0.112 1 0.823 5.333 74.066 

T15 0.6 45 587 0.124 0.2 0.446 11.333 22.867 

T16 0.8 25 788 0.094 1 0.598 8.667 116.352 

T17 0.8 30 926 0.112 0.2 0.777 11.333 32.582 

T18 0.8 35 421 0.124 0.4 0.649 13.667 32.801 

T19 0.8 40 587 0.316 0.6 0.568 8.333 174.822 

T20 0.8 45 659 0.08 0.1 0.668 10.667 8.281 
T21 0.85 25 926 0.124 0.6 0.786 17.333 108.219 

T22 0.85 30 421 0.316 0.1 0.812 15.667 20.897 

T23 0.85 35 587 0.08 1 0.452 12.667 73.765 

T24 0.85 40 659 0.094 0.2 0.657 15.667 19.461 

T25 0.85 45 788 0.112 0.4 0.678 16.333 55.453 

 

 
Fig. 3. Ranking of options for Case 2 

 
In the PSI-R-PIV combination, among the four 

methods PSI, R, PSI-PIV, and R-PSI, only PSI-PIV 
identifies experiment T19 as the best, similar to 

when using the FUCA 1, FUCA 2, FUCA 3, and FUCA 4 
methods. Thus, in terms of finding the best option, 
PSI-PIV has an advantage over the other three 
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methods PSI, R, and R-PSI in this case. It was also 
observed that when using the PSI-PIV method to 
rank experiments, the rankings of some experiments 
were also consistently determined compared to 
when using other methods. For example, T3 was 
consistently ranked 3rd when using both the PSI-PIV 
and FUCA 3 methods, T10 was consistently ranked 
6th when using both the PSI-PIV and FUCA 1 methods, 
T11 was consistently ranked 25th when using all 

three methods PSI-PIV, FUCA 2, and FUCA 3, T17 was 
consistently ranked 15th when using both the PSI-PIV 
and FUCA 1 methods, T18 was consistently ranked 
17th, and T24 was ranked 20th when using both the 
PSI-PIV and FUCA 4 methods. Calculation of the 
Spearman correlation coefficient was also 

performed and the results are shown in Table 12. 

 
Table 12. Spearman correlation coefficient for Case 2 

 FUCA 1 FUCA 2 FUCA 3 FUCA 4 Average 

PSI 0.8469 0.8962 0.8423 0.2992 0.7212 

R 0.8100 0.7492 0.6962 0.5677 0.7058 

PSI-PIV 0.8731 0.8915 0.8162 0.3800 0.7402 

R-PIV 0.9246 0.8615 0.7854 0.6662 0.8094 

 
The average value of the Spearman coefficient 

between R and the FUCA 1, FUCA 2, FUCA 3, and 
FUCA 4 methods is 0.7058, the lowest among the 
methods in the PSI-R-PIV combination. Therefore, in 
this case, R shows the lowest efficiency. Although R-
PIV has a higher average Spearman coefficient of 
0.8094 compared to FUCA 1, FUCA 2, FUCA 3, and 
FUCA 4, it does not identify the best experiment 
similarly to the FUCA methods. Meanwhile, PSI-PIV 
has identified T25 as the best experiment, similar to 
when using the FUCA 1, FUCA 2, FUCA 3, and FUCA 4 

methods. In conclusion, in this case, the 
performance of the options in the PSI-R-PIV 
combination decreases in the following order: PSI-
PIV > R-PIV > PSI > R. 

 
Case 3 
 

Seventeen metal drilling options needing ranking 
have been synthesized in Table 13, denoted 
respectively as D1, D2,..., D17.  

 
Table 13. Data on the drilling experiments [29] 

Exp. n (rpm) fd (mm/rev) C1 (s) C2 (mm) C3 (mm) C4 (mm) C5 (mm) C6 (m) 

D1 1100 0.038 14.03 0.051 0.058 0.105 0.21 0.479 

D2 1100 0.076 7.59 0.053 0.058 0.155 0.245 1.211 

D3 1100 0.076 7.34 0.035 0.06 0.165 0.215 0.916 

D4 1100 0.203 4.06 0.033 0.075 0.18 0.215 0.535 

D5 2920 0.038 5.4 0.048 0.078 0.25 0.195 0.601 

D6 2920 0.038 5.5 0.05 0.084 0.185 0.185 0.703 

D7 2920 0.076 2.81 0.033 0.058 0.185 0.185 0.466 

D8 2920 0.076 2.62 0.028 0.048 0.2 0.19 0.577 

D9 2920 0.076 2.88 0.028 0.05 0.18 0.15 0.417 

D10 2920 0.076 2.75 0.043 0.051 0.23 0.195 0.675 

D11 2920 0.076 2.84 0.043 0.055 0.165 0.205 0.418 

D12 2920 0.203 1.59 0.028 0.074 0.145 0.17 0.601 

D13 2920 0.203 1.88 0.038 0.064 0.185 0.175 0.563 

D14 4540 0.308 3.44 0.049 0.066 0.19 0.185 0.391 

D15 4540 0.076 2.04 0.023 0.059 0.16 0.18 0.493 

D16 4540 0.076 2.1 0.043 0.05 0.235 0.185 0.675 

D17 4540 0.203 1.25 0.04 0.049 0.44 0.19 0.65 

 
Each experiment varied two parameters: spindle 

speed (n) and feed rate (fd). Six parameters were 
measured in each experiment, all Type C criteria 
including drilling time (C1), Entry burr height (C2), 
Exit burr height (C3), Entry burr thickness (C4), Exit 

burr thickness (C5), and surface roughness (C6). 
Previously, the TOPSIS, COPRAS, and FUCA methods 
were used to rank the experiments [27,28]. The PSI-
R-PIV combination will also be used for this task in 
this research. 
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The application of the PSI-R-PIV combination to 
rank the drilling experiments in this case was carried 
out similarly to Case 1. Fig. 4 represents the ranking 
results of the experiments using four methods in the 

PSI-R-PIV combination (including PSI, R, PSI-PIV, and 
R-PIV) and three methods TOPSIS, COPRAS, and 
FUCA in [27,28]. 

 

 
Fig. 4. Ranking of options for Case 3 

 
All three methods used in previously published 

documents, including TOPSIS, COPRAS, and FUCA, 
identified D15 as the best experiment among the 17 
experiments conducted. D15 was also found to be 
the best experiment when using the PSI-PIV method. 
However, when using the PSI, R, and R-PIV methods, 
D15 was not identified as the best experiment. 
Therefore, in terms of identifying the best 
experiment, PSI-PIV also proves to be more effective 
than the PSI, R, and R-PIV methods in this case. 
Furthermore, it is easily observed that the rankings 
of the remaining experiments were also consistently 
determined when ranked using the PSI-PIV method 
compared to other methods. For instance, D1 was 
ranked 17th, D2 was ranked 16th, D5 was ranked 13th, 
D6 was ranked 14th, and D16 was ranked 9th, which 
was the same as when using TOPSIS and COPRAS. D3 
was ranked 15th, which was the same as when using 
all three methods TOPSIS, COPRAS, and FUCA, etc. 
The Spearman correlation coefficient ranking was 
also calculated in this case and summarized in Table 
14. 

Once again, we observe that the average value of 
the Spearman coefficient for R compared to TOPSIS, 
COPRAS, and FUCA is the lowest, while the average 
value of the Spearman coefficient for PSI-PIV 
compared to TOPSIS, COPRAS, and FUCA is the 
highest. This means that R is the least effective, 
whereas PSI-PIV is the most effective. In conclusion, 
the performance of the options in the PSI-R-PIV 
combination decreases in the following order across 
all three cases: PSI-PIV > R-PIV > PSI > R. 

Table 15 summarizes the efficiency rankings of 
the four methods in the PSI-R-PIV combination after 
performing the three cases above. 

 
Table 14. Spearman correlation coefficient for Case 3 

  TOPSIS COPRAS FUCA Average 

PSI 0.7770 0.7794 0.8799 0.8121 

R 0.6471 0.6814 0.8162 0.7149 

PSI-PIV 0.9779 0.9828 0.9240 0.9616 

R-PIV 0.8309 0.8431 0.8309 0.8350 

 
Table 15. Efficiency ranking of methods 

Method Case 1 Case 2 Case 3 

PSI 2 3 3 

R 4 4 4 

PSI-PIV 1 1 1 

R-PIV 3 2 2 

 
In all three cases conducted, R consistently shows 

the lowest efficiency among the four methods in the 
PSI-R-PIV combination. Conversely, PSI-PIV 
consistently demonstrates superior performance 
compared to the other methods. These results lead 
to a firm conclusion that PSI-PIV is the best-
evaluated method in the PSI-R-PIV combination. 
Another notable point to mention is that in all cases 
conducted, the best option identified using PSI-PIV 
remains consistent compared to using other 
methods in the published documents. This is 
something that the PSI, R, and R-PIV methods fail to 
achieve. These findings demonstrate that PSI-PIV is a 
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method that ensures high accuracy. This 
achievement is likely due to the use of the PSI 
method to calculate the weights of the criteria, 
which has taken advantage of the flexibility of this 
method, reducing subjectivity in weight calculation 
[40]. In addition, ranking alternatives using the PIV 
method has also taken advantage of the unique 
feature of this method, which is the determination 
of the degree of deviation of the weighted 
normalized value from the best value within its 
range for each criterion [31]. Using this method 
instills confidence in ensuring accuracy in finding the 
optimal solution in mechanical machining processes. 
Conversely, the R method is not recommended. This 
is not intended to criticize the R method or any other 
method but merely emphasizes that when seeking 
the best solution in mechanical machining processes, 
users should employ the PSI-PIV method. 

 
CONCLUSION 
 

Combining the three methods PSI, R, and PIV 
creates a new method named PSI-R-PIV. For each 
problem requiring ranking of options, using PSI-R-
PIV always generates four sets of option rankings: 
one from PSI, one from R, one from PSI-PIV, and one 
from R-PIV. Examples conducted in the field of 
mechanical processing (milling, turning, drilling) 
demonstrate that R is not suitable for use, whereas 
PSI-PIV has affirmed the necessary accuracy and is 
recommended for use. This means using PSI to 
calculate weights for criteria and then using PIV to 
select the best option. 

In the field of mechanical processing, users can 
confidently utilize PSI-PIV to find the best option 
among available alternatives without expending 
additional effort in searching for other methods to 
rank options or in determining weights for criteria. 

Applying PSI-PIV to solve problems in other fields 
beyond machining operations to continue evaluating 
the effectiveness of this method when applied in 
other domains is a task for the near future to 
establish solid scientific foundations for this method.  

In addition, some tasks to be implemented in the 
near future can be listed as follows: developing the 
PSI-PIV method to handle situations where the 
decision matrix contains fuzzy number sets or 
qualitative factors; or hybridizing PSI with other 
MCDM methods; or identifying alternative data 
normalization methods to combine with the PSI 
method in cases where the available data 
normalization method in the PSI method cannot be 
used (see Eqs. (2) and (3)), which is the case where 

in criteria of type B there is a criterion whose 
maximum value in the alternatives is 0 or in criteria 
of type C there is a value of 0. 
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