Journal Menu
Archive
Last Edition

Development of an innovative cooling system at the countershaft assembly station

Authors:

L.E. Espino-De la Rosa1

, H. Arcos-Gutiérrez2

, J.E. García Herrera2

, I.E. Garduño2

J.A. Betancourt-Cantera3

1Posgrado CIATEQ A.C., Eje 126 No. 225, Industrial Park, San Luis Potosi 78395, Mexico
2CONAHCYT‐CIATEQ A.C, Eje 126 No. 225, Industrial Park, San Luis Potosi 78395, Mexico
3CONAHCYT‐InnovaBienestar from Mexico, Science and Technology #790, Saltillo 25290, Coah., Mexico

Received: 14 August 2024
Revised: 24 October 2024
Accepted: 1 November 2024
Published: 16 December 2024

Abstract:

In automotive component manufacturing, temperature gradients are typical at workstations, especially in summer, affecting production processes. Interruptions in production lines are unacceptable, as constant flow is crucial to avoid financial losses. This issue is evident at the assembly station for the countershaft of truck transmissions, which can reach 181.7°C after welding. During summer, downtimes increase due to inadequate cooling process, as indicated by 235 minutes of downtime in May, coinciding with rising temperatures and increased demand in September, highlighting the need for an effective cooling system. This research proposes a novel design to homogenize cooling times for the countershaft. The cooling cabin was designed to fit the shaft dimensions, with air inlets strategically positioned based on assembly geometry, focusing on the hottest area. Numerical simulations using the finite element method integrated a turbulence model to analyze airflow at the cabin’s inlet and outlet. The goal was to reduce the shaft temperature from 181.7°C to an ambient range of 28°C to 34°C, minimizing cooling time and reducing downtime. Results showed a successful reduction, achieving 26.9°C.

Keywords:

Design and Simulation, Ansys Software, Cooling system, Countershaft, CFD simulation

References:

[1] M. Pansera, R. Owen, Framing inclusive innovation within the discourse of development: Insights from case studies in India. Research Policy, 47(1), 2018: 23–34. https://doi.org/10.1016/j.respol.2017.09.007
[2] A.J. Field, The Most Technologically Progressive Decade of the Century. American Economic Review, 93(4), 2003: 1399-1413. https://doi.org/10.1257/000282803769206377
[3] M. Khodaparastan, A.A. Mohamed, W. Brandauer, Recuperation of regenerative braking energy in electric rail transit systems. IEEE Transactions on Intelligent Transportation Systems, 20(8), 2019: 2831- 2847. https://doi.org/10.1109/TITS.2018.2886809
[4] INEGI, (2021). Conociendo la Industria del Autotransporte de Carga. México: Instituto Nacional de Estadística y Geografía. (Accessed: 12 August 2024)
https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/889463903994.pdf
[5] C.Z. Asencio Malave, M.Á. Ganchozo López, Costo de Logistica y Rentabilidad en la Empresa de Transporte Tranpsfar S.A, 2022. Ciencia Latina Revista Científica Multidisciplinar, 8(1), 2024: 186-204. https://doi.org/10.37811/cl_rcm.v8i1.9410
[6] M. Yolanda, R. Morales, L. Gerardo, S. Vela, Análisis de las características y capacidad de diseño de los vehículos de carga considerando la potencia y torque del motor del vehículo. SCT, Publicación técnica No.412, Sanfandila 2014. (In Spanish)
[7] L. Solazzi, D. Bertoli, L. Ghidini, Static and dynamic study of the industrial vehicle transmission adopting composite materials. Composites Structure, 316, 2023: 117042.
https://doi.org/10.1016/j.compstruct.2023.117042
[8] K.A. Nerstad, W.E. Windish, Countershaft transmission. Patent US 4676116, United States, 1987.
[9] O.C. Duffy, S.A. Heard, G. Wright, Fundamentals of Mobile Heavy Equipment. Jones & Bartlett Learning, Burlington, USA, 2019.
[10] M.S. Wêglowski, Y. Huang, Y.M. Zhang, Effect of welding current on metal transfer in GMAW. Archives of Materials Science and Engineering, 33(1), 2008: 49-56.
[11] I.A. Ibrahim I. S.A.Mohamat, The Effect of Gas Metal Arc Welding (GMAW) processes on different welding parameters. Procedia Engineering, 41, 2012: 1502-1506.
https://doi.org/10.1016/j.proeng.2012.07.342
[12] M.J. Cabascango Álvarez, Modelamiento del flujo de aire forzado en un invernadero. Facultad de Ingeniería en Ciencias Aplicadas, (Trabajos Titulación Pregrado), Ibarra, Ecuador, 2019. (In Spanish) http://repositorio.utn.edu.ec/handle/123456789/9 366
[13] J.G. Paredes Salinas, C.F. Pérez Salinas, C.B. Castro Miniguano, Análisis de las propiedades mecánicas del compuesto de matriz poliéster reforzado con fibra de vidrio 375 y cabuya aplicado a la industria automotriz. Enfoque UTE, 8(3), 2017: 1-15. (In Spanish)
[14] J. Xamán, M. Gijón-Rivera, Dinámica de fluidos computacional para ingenieros. Palibrio, Indiana, United States, 2016.
[15] J. Jiménez, Turbulence and vortex dynamics, Madrid and Stanford, 2004. (Accessed: 26 February 2024) https://torroja.dmt.upm.es/area_alumnos/Introdu ccion_a_la_turbulencia/apuntes.pdf
[16] L. Davidson, Fluid mechanics, turbulent flow and turbulence modeling. CFD Course, 2012: 1-270. (Accessed: 18 December 2023)
https://www.tfd.chalmers.se/~lada/comp_turb_model/postscript_files/solids-and-fluids_turbulent-flow_turbulence-modelling_12.pdf
[17] J. Franke, A. Hellsten, H. Schlünzen, B. Carissimo, Best practice guideline for the CFD simulation of flows in the urban environment. COST European Cooperation in Science and Technology, 2007: hal-041813902007.
https://sciencespo.hal.science/ENPC-CEREA/hal-04181390v1
[18] F.S. Chiwo, A.d.C. Susunaga-Notario, J.A. Betancourt-Cantera, R. Pérez-Bustamante, V.H. Mercado-Lemus, J. Méndez-Lozoya, G. Barrera-Cardiel, J.E. García-Herrera, H. Arcos- Gutiérrez, I.E. Garduño, Design and Optimization of the Internal Geometry of a Nozzle for a Thin-Slab Continuous Casting Mold. Designs, 8(2), 2024: 2. https://doi.org/10.3390/designs8010002
[19] H. Salehi, H. Basir, H.M. Bidhend, F. Farhani, M.A. Rosen, Experimental and simulation study of an automobile cooling system: Performance improvement using passive flow control. International Communications in Heat and Mass Transfer, 149, 2023: 107168.
https://doi.org/10.1016/j.icheatmasstransfer.2023.107168
[20] J.D. Viana-Fons, J. Payá, Dynamic cabin model of an urban bus in real driving conditions. Energy, 288, 2024: 129769. https://doi.org/10.1016/j.energy.2023.129769
[21] T. Kobayashi, M. Tsubokura, CFD application in automotive industry. 100 Volumes of ‘Notes on Numerical Fluid Mechanics’. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 100, 2009: 285-295. https://doi.org/10.1007/978-3-540-70805-6_22
[22] C. Zhang, M. Uddin, A.C. Robinson, L. Foster, Full vehicle CFD investigations on the influence of front-end configuration on radiator performance and cooling drag. Applied Thermal Engineering, 130, 2018: 1328-1340. https://doi.org/10.1016/j.applthermaleng.2017.11.086
[23] F. Wang, A New System Restriction Simulation Method for Underhood Airflow CFD Analysis. SAE Technical Paper. 2007-01-0768. SAE International, 2007.
[24] E. Rusly, L. Aye, W.W.S Charters, A. Ooi, CFD analysis of ejector in a combined ejector cooling system. International Journal of Refrigeration, 28(7), 2005: 1092-1101. https://doi.org/10.1016/j.ijrefrig.2005.02.005
[25] H.A. Hasan, H. Togun, A.M. Abed, H.I. Mohammed, N. Biswas, A novel air-cooled Li-ion battery (LIB) array thermal management system–a numerical analysis. International Journal of Thermal Sciences, 190, 2023: 108327. https://doi.org/10.1016/j.ijthermalsci.2023.108327
[26] T. Gammaidoni, J. Zembi, M. Battistoni, G. Biscontini, A. Mariani, CFD Analysis of an Electric Motor’s Cooling System: Model Validation and Solutions for Optimization. Case Studies in Thermal Engineering, 49, 2023: 103349. https://doi.org/10.1016/j.csite.2023.103349
[27] D.Y. Kim, H.C. No, A CFD-based design optimization of air-cooled passive decay heat removal system. Nuclear Engineering and Design, 337, 2018: 351-363. https://doi.org/10.1016/j.nucengdes.2018.07.008
[28] L. Tan, Y. Yuan, L. Tang, C. Huang, Numerical simulation on fluid flow and temperature prediction of motorcycles based on CFD. Alexandria Engineering Journal, 61(12), 2022: 12943-12963.
https://doi.org/10.1016/j.aej.2022.07.001
[29] A. Ašonja, E. Desnica, I. Palinkaš, Analysis of the static behavior of the shaft based on finite element method under effect of different variants of load. Applied Engineering Letters, 1(1), 2016, 8-15.

© 2024 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 4
December 2024

Last Edition

Volume 9
Number 4
December 2024

How to Cite

L.E. Espino-De la Rosa, H. Arcos-Gutiérrez, J.E. García Herrera, I.E. Garduño, J.A. Betancourt-Cantera, Development of an Innovative Cooling System at the Countershaft Assembly Station. Applied Engineering Letters, 9(4), 2024: 195-202.
https://doi.org/10.46793/aeletters.2024.9.4.2

More Citation Formats

Espino-De la Rosa, L.E., Arcos-Gutiérrez, H., García Herrera, J.E., Garduño, I.E., & Betancourt-Cantera, J.A. (2024). Development of an Innovative Cooling System at the Countershaft Assembly Station. Applied Engineering Letters, 9(4), 195-202.
https://doi.org/10.46793/aeletters.2024.9.4.2

Espino-De la Rosa, L.E., et al. “Development of an Innovative Cooling System at the Countershaft Assembly Station.“ Applied Engineering Letters, vol. 9, no. 4, 2024, pp. 195-202.
https://doi.org/10.46793/aeletters.2024.9.4.2

Espino-De la Rosa, L.E., H. Arcos-Gutiérrez, J.E. García Herrera, I.E. Garduño, and J.A. Betancourt-Cantera. 2024. “Development of an Innovative Cooling System at the Countershaft Assembly Station.“ Applied Engineering Letters, 9 (4):195-202.
https://doi.org/10.46793/aeletters.2024.9.4.2

Espino-De la Rosa, L.E., Arcos-Gutiérrez, H., García Herrera, J.E., Garduño, I.E. and Betancourt-Cantera, J.A. (2024). Development of an Innovative Cooling System at the Countershaft Assembly Station. Applied Engineering Letters, 9(4), pp. 195-202.
doi: 10.46793/aeletters.2024.9.4.2.

Using lean manufacturing to improve process efficiency in a fabrication company

Authors:

Andra Maria Popa1
, Kapil Gupta1
1University of Johannesburg, Mechanical and Industrial Engineering Technology, Johannesburg, South Africa

Received: 29 June 2024
Revised: 20 September 2024
Accepted: 26 September 2024
Published: 30 September 2024

Abstract:

This article presents a case study on improving process efficiency in a mining equipment part fabrication company. The company was facing issues concerning communication, organisation, and workflow processes. This study investigated that ineffective communication among departments was the major weakness which was responsible for the long lead or idle time. This lead time was a waste that affected the company’s productivity. A great amount of time was spent on non-value-added processes. The Kanban Centralised Communication System was implemented. Time study and value stream mapping were also used. A significant improvement in process efficiency from 34% to 85% was achieved by reducing lead time from 4200 minutes to 1680 minutes after streamlining the communication in the company using Kanban.

Keywords:

Lean manufacturing, Kanban, Optimization, Process efficiency, Production lead time, Value stream mapping

References:

[1] A. Belhadi, F.E. Touriki, S. Elfezazi, Evaluation of critical success factors (CSFs) to implement Lean implementation in SMES using AHP: A case study. International Journal of Lean Six Sigma, 10(3), 2019: 803-829. https://doi.org/10.1108/IJLSS-12-2016-0078
[2] K.S. Minh, S. Zailani, M. Iranmanesh, S. Heidari, Do lean manufacturing practices have a negative impact on job satisfaction. International Journal of Lean Six Sigma, 10(1), 2019: 257-274. https://doi.org/10.1108/IJLSS-11-2016-0072
[3] K. Das, M. Dixon, Lean manufacturing and service. CRC Press, Boca Raton, 2024. https://doi.org/10.1201/9781003121688
[4] S. Gupta, P. Chanda, A case study concerning the 5S Lean technique in a scientific equipment manufacturing company. Grey Systems: Theory and Application, 10(3), 2020:339-357. https://doi.org/10.1108/GS-01-2020-0004
[5] J.P. Davim, Progress in Lean Manufacturing. Springer Cham, 2018. https://doi.org/10.1007/978-3-319-73648-8
[6] L. Dubey, K. Gupta, Lean manufacturing based space utilization and motion waste reduction for efficiency enhancement in a machining shop: A case study. Applied Engineering Letters, 8(3), 2023: 121-130. https://doi.org/10.18485/aeletters.2023.8.3.4
[7] Y. Shi, X. Wang, X. Zhu, Lean manufacturing and productivity changes: the moderating role of R&D. International Journal of Productivity and Performance Management, 69(1), 2019:169-191. https://doi.org/10.1108/IJPPM-03-2018-0117
[8] S. Sahoo, S. Yadav, Lean implementation in small- and medium-sized enterprise. Benchmarking: An International Journal, 25(4), 2018: 1121-1147. https://doi.org/10.1108/BIJ-02-2017-0033
[9] S. Caceres-Gelvez, M.D. Arango-Serna, J.A. Zapata-Cortes, Evaluating the performance of a cellular manufacturing system proposal for sewing department of a sportswear manufacturing company: A simulation approach. Journal of Applied Research and Technology, 20(1), 2022: 68-83. https://doi.org/10.22201/icat.24486736e.2022.20.1.1335
[10] H.H. Berhe, Application of Kaizen philosophy for enhancing manufacturing industries’ performance: exploratory study of Ethiopian chemical industries. International Journal of Quality & Reliability Management, 39(1),2022: 204-235. https://doi.org/10.1108/IJQRM-09-2020-0328
[11] C. Hemalatha, K. Sankaranarayanasamy, N. Durairaaj, Lean and agile manufacturing for work-in-process (WIP) control. Materials Today Proceedings, 46(20), 2021: 10334-10338. https://doi.org/10.1016/j.matpr.2020.12.473
[12] J. Singh, H. Singh, A. Singh, J. Singh, Managing industrial operations by Lean thinking using value stream mapping and six sigma in manufacturing unit. Management Decision, 58(6), 2019: 1118-1148. https://doi.org/10.1108/MD-04-2017-0332
[13] C. Veres, L. Marian, M.S. Moica, K. Al-Akel, Case study concerning 5S method impact in an automotive company. Procedia Manufacturing, 22, 2018: 900-905. https://doi.org/10.1016/j.promfg.2018.03.127
[14] J.C-C. Chen, C.-Y. Cheng, Solving social loafing phenomenon through Lean-Kanban: A case study in non-profit organization. Journal of Organizational Change Management, 31(5), 2017: 984-1000. https://doi.org/10.1108/JOCM-12-2016-0299
[15] T. Bandoophanit, S. Pumprasert, The paradoxes of just-in-time system: an abductive analysis of a public food manufacturing and exporting company in Thailand. Management Research Review, 45(8), 2022: 1019-1043 https://doi.org/10.1108/MRR-04-2021-0262
[16] S. Gawande, J.S. Karajgikar, Implementation of Kanban, a Lean tool, In Switchgear Manufacturing Industry – A Case Study. Proceedings of the International Conference on Industrial Engineering and Operations Management, July 26-27, 2018, Paris, France, 2335-2348.
[17] M.A. Habib, R. Rizvan, S. Ahmed, Implementing Lean manufacturing for improvement of operational performance in a labeling and packaging plant: A case study in Bangladesh. Results in Engineering, 17, 2023:100818. https://doi.org/10.1016/j.rineng.2022.100818
[18] A.K. Das, M.C. Das, Productivity improvement using different Lean approaches in small and medium enterprises (SMEs). Management Science Letters, 13, 2023: 51-64. https://doi.org/10.5267/j.msl.2022.9.002
[19] P.A. Marques, D. Jorge, J. Reis, Using Lean to Improve Operational Performance in a Retail Store and E-Commerce Service: A Portuguese Case Study. Sustainability, 14(10), 2022: 5913. https://doi.org/10.3390/su14105913
[20] F. Khair, M. A. S. Putra, I. Rizkia, Improvement and analysis of aircraft maintenance flow process using Lean manufacturing, PDCA, PICA, and VSM for sustainable operation system. IOP Conf. Series: Earth and Environmental Science, 1324, 2024: 012071. https://doi.org/10.1088/17551315/1324/1/012071
[21] I. Rizkya, K. Syahputri, R.M. Sari, D.S. Situmorang, Lean Manufacturing: Waste Analysis in Crude Palm Oil Process. IOP Conference Series: Materials Science and Engineering, 851, 2020: 012058. https://doi.org/10.1088/1757-899X/851/1/012058
[22] A. Pradeep, K. Balaji, Reduction of lead time in an automobile rubber component manufacturing process through value stream mapping. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(6), 2022:2470-2479. https://doi.org/10.1177/09544089221094094
[23] D. Cabezas, I. Muelle, E. Avalos-Ortecho, Implementation of Lean Manufacturing to Increase the Machine’s Availability of a Metalworking Company. 7 th North American International Conference on Industrial Engineering and Operations Management, June 12-14, 2022, Orlando, Florida, USA.
[24] W. Kosasih, I.K. Sriwana, E.C. Sari, C.O. Doaly, Applying value stream mapping tools and kanban system for waste identification and reduction (case study: a basic chemical company). IOP Conference Series: Materials Science and Engineering, 528, 2019: 012050. https://doi.org/10.1088/1757-899X/528/1/012050
[25] B.S. Patel, M. Sambasivan, R. Panimalar, R. Krishna, A relationship analysis of drivers and barriers of Lean manufacturing. The TQM Journal, 34(5), 2022: 845-876. https://doi.org/10.1108/TQM-12-2020-0296

© 2024 by the author. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 4
December 2024

Last Edition

Volume 9
Number 4
December 2024

How to Cite

V.H. Quan, Research and Optimization of Sport Utility Vehicle Aerodynamic Design. Applied Engineering Letters, 9(2), 2024: 105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

More Citation Formats

Quan, V.H. (2024). Research and Optimization of Sport Utility Vehicle Aerodynamic Design. Applied Engineering Letters, 9(2), 105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

Quan, Vu Hai, “Research and Optimization of Sport Utility Vehicle Aerodynamic Design.“ Applied Engineering Letters, vol. 9, no. 2, pp. 2024, 105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

Quan, Vu Hai, 2024. “Research and Optimization of Sport Utility Vehicle Aerodynamic Design.“ Applied Engineering Letters, 9 (2):105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

Quan, V.H. (2024). Research and Optimization of Sport Utility Vehicle Aerodynamic Design. Applied Engineering Letters, 9(2), pp. 105-115.
doi: 10.46793/aeletters.2024.9.2.5.