Journal Menu
Archive
Last Edition

Using lean manufacturing to improve process efficiency in a fabrication company

Authors:

Andra Maria Popa1
, Kapil Gupta1
1University of Johannesburg, Mechanical and Industrial Engineering Technology, Johannesburg, South Africa

Received: 29 June 2024
Revised: 20 September 2024
Accepted: 26 September 2024
Published: 30 September 2024

Abstract:

This article presents a case study on improving process efficiency in a mining equipment part fabrication company. The company was facing issues concerning communication, organisation, and workflow processes. This study investigated that ineffective communication among departments was the major weakness which was responsible for the long lead or idle time. This lead time was a waste that affected the company’s productivity. A great amount of time was spent on non-value-added processes. The Kanban Centralised Communication System was implemented. Time study and value stream mapping were also used. A significant improvement in process efficiency from 34% to 85% was achieved by reducing lead time from 4200 minutes to 1680 minutes after streamlining the communication in the company using Kanban.

Keywords:

Lean manufacturing, Kanban, Optimization, Process efficiency, Production lead time, Value stream mapping

References:

[1] A. Belhadi, F.E. Touriki, S. Elfezazi, Evaluation of critical success factors (CSFs) to implement Lean implementation in SMES using AHP: A case study. International Journal of Lean Six Sigma, 10(3), 2019: 803-829. https://doi.org/10.1108/IJLSS-12-2016-0078
[2] K.S. Minh, S. Zailani, M. Iranmanesh, S. Heidari, Do lean manufacturing practices have a negative impact on job satisfaction. International Journal of Lean Six Sigma, 10(1), 2019: 257-274.
https://doi.org/10.1108/IJLSS-11-2016-0072
[3] K. Das, M. Dixon, Lean manufacturing and service. CRC Press, Boca Raton, 2024.
https://doi.org/10.1201/9781003121688
[4] S. Gupta, P. Chanda, A case study concerning the 5S Lean technique in a scientific equipment manufacturing company. Grey Systems: Theory and Application, 10(3), 2020: 339-357.
https://doi.org/10.1108/GS-01-2020-0004
[5] J.P. Davim, Progress in Lean Manufacturing. Springer Cham, 2018. https://doi.org/10.1007/978-3-319-73648-8
[6] L. Dubey, K. Gupta, Lean manufacturing based space utilization and motion waste reduction for efficiency enhancement in a machining shop: A case study. Applied Engineering Letters, 8(3), 2023: 121-130. https://doi.org/10.18485/aeletters.2023.8.3.4
[7] Y. Shi, X. Wang, X. Zhu, Lean manufacturing and productivity changes: the moderating role of R&D. International Journal of Productivity and Performance Management, 69(1), 2019: 169-191.
https://doi.org/10.1108/IJPPM-03-2018-0117
[8] S. Sahoo, S. Yadav, Lean implementation in small- and medium-sized enterprise. Benchmarking: An International Journal, 25(4), 2018: 1121-1147. https://doi.org/10.1108/BIJ-02-2017-0033
[9] S. Caceres-Gelvez, M.D. Arango-Serna, J.A. Zapata-Cortes, Evaluating the performance of a cellular manufacturing system proposal for sewing department of a sportswear manufacturing company: A simulation approach. Journal of Applied Research and Technology, 20(1), 2022: 68-83.
https://doi.org/10.22201/icat.24486736e.2022.20.1.1335
[10] H.H. Berhe, Application of Kaizen philosophy for enhancing manufacturing industries’ performance: exploratory study of Ethiopian chemical industries. International Journal of Quality & Reliability Management, 39(1), 2022: 204-235. https://doi.org/10.1108/IJQRM-09-2020-0328
[11] C. Hemalatha, K. Sankaranarayanasamy, N. Durairaaj, Lean and agile manufacturing for work-in-process (WIP) control. Materials Today Proceedings, 46(20), 2021: 10334-10338.
https://doi.org/10.1016/j.matpr.2020.12.473
[12] J. Singh, H. Singh, A. Singh, J. Singh, Managing industrial operations by Lean thinking using value stream mapping and six sigma in manufacturing unit. Management Decision, 58(6), 2019: 1118-1148. https://doi.org/10.1108/MD-04-2017-0332
[13] C. Veres, L. Marian, M.S. Moica, K. Al-Akel, Case study concerning 5S method impact in an automotive company. Procedia Manufacturing, 22, 2018: 900-905. https://doi.org/10.1016/j.promfg.2018.03.127
[14] J.C-C. Chen, C.-Y. Cheng, Solving social loafing phenomenon through Lean-Kanban: A case study in non-profit organization. Journal of Organizational Change Management, 31(5), 2017: 984-1000.
https://doi.org/10.1108/JOCM-12-2016-0299
[15] T. Bandoophanit, S. Pumprasert, The paradoxes of just-in-time system: an abductive analysis of a public food manufacturing and exporting company in Thailand. Management Research Review, 45(8), 2022: 1019-1043 https://doi.org/10.1108/MRR-04-2021-0262
[16] S. Gawande, J.S. Karajgikar, Implementation of Kanban, a Lean tool, In Switchgear Manufacturing Industry – A Case Study. Proceedings of the International Conference on Industrial Engineering and Operations Management, July 26-27, 2018, Paris, France, 2335-2348.
[17] M.A. Habib, R. Rizvan, S. Ahmed, Implementing Lean manufacturing for improvement of operational performance in a labeling and packaging plant: A case study in Bangladesh. Results in Engineering, 17, 2023: 100818. https://doi.org/10.1016/j.rineng.2022.100818
[18] A.K. Das, M.C. Das, Productivity improvement using different Lean approaches in small and medium enterprises (SMEs). Management Science Letters, 13, 2023: 51-64. https://doi.org/10.5267/j.msl.2022.9.002
[19] P.A. Marques, D. Jorge, J. Reis, Using Lean to Improve Operational Performance in a Retail Store and E-Commerce Service: A Portuguese Case Study. Sustainability, 14(10), 2022: 5913.
https://doi.org/10.3390/su14105913
[20] F. Khair, M. A. S. Putra, I. Rizkia, Improvement and analysis of aircraft maintenance flow process using Lean manufacturing, PDCA, PICA, and VSM for sustainable operation system. IOP Conf. Series: Earth and Environmental Science, 1324, 2024: 012071. https://doi.org/10.1088/17551315/1324/1/012071
[21] I. Rizkya, K. Syahputri, R.M. Sari, D.S. Situmorang, Lean Manufacturing: Waste Analysis in Crude Palm Oil Process. IOP Conference Series: Materials Science and Engineering, 851, 2020: 012058.
https://doi.org/10.1088/1757-899X/851/1/012058
[22] A. Pradeep, K. Balaji, Reduction of lead time in an automobile rubber component manufacturing process through value stream mapping. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(6), 2022: 2470-2479.
https://doi.org/10.1177/09544089221094094
[23] D. Cabezas, I. Muelle, E. Avalos-Ortecho, Implementation of Lean Manufacturing to Increase the Machine’s Availability of a Metalworking Company. 7th North American International Conference on Industrial Engineering and Operations Management, June 12-14, 2022, Orlando, Florida, USA.
[24] W. Kosasih, I.K. Sriwana, E.C. Sari, C.O. Doaly, Applying value stream mapping tools and kanban system for waste identification and reduction (case study: a basic chemical company). IOP Conference Series: Materials Science and Engineering, 528, 2019: 012050. https://doi.org/10.1088/1757-899X/528/1/012050
[25] B.S. Patel, M. Sambasivan, R. Panimalar, R. Krishna, A relationship analysis of drivers and barriers of Lean manufacturing. The TQM Journal, 34(5), 2022: 845-876. https://doi.org/10.1108/TQM-12-2020-0296

© 2024 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 3
September 2024

Last Edition

Volume 9
Number 3
September 2024

How to Cite

A.M. Popa, K. Gupta, Using Lean Manufacturing to Improve Process Efficiency in a Fabrication Company. Applied Engineering Letters, 9(3), 2024: 172-184.
https://doi.org/10.46793/aeletters.2024.9.3.5

More Citation Formats

Popa, A.M., & Gupta, K. (2024). Using Lean Manufacturing to Improve Process Efficiency in a Fabrication Company. Applied Engineering Letters, 9(3), 172-184.
https://doi.org/10.46793/aeletters.2024.9.3.5

Popa, A.M., & K. Gupta, “Using Lean Manufacturing to Improve Process Efficiency in a Fabrication Company.“ Applied Engineering Letters, vol. 9, no. 3, 2024, pp. 172-184.
https://doi.org/10.46793/aeletters.2024.9.3.5

Popa, Maria Popa, and Kapil Gupta, 2024. “Using Lean Manufacturing to Improve Process Efficiency in a Fabrication Company.“ Applied Engineering Letters, 9 (3), 172-184.
https://doi.org/10.46793/aeletters.2024.9.3.5

Popa, A.M. and Gupta, K. (2024). Using Lean Manufacturing to Improve Process Efficiency in a Fabrication Company. Applied Engineering Letters, 9(3), pp. 172-184.
doi: 10.46793/aeletters.2024.9.3.5.

Using lean manufacturing to improve process efficiency in a fabrication company

Authors:

Andra Maria Popa1
, Kapil Gupta1
1University of Johannesburg, Mechanical and Industrial Engineering Technology, Johannesburg, South Africa

Received: 29 June 2024
Revised: 20 September 2024
Accepted: 26 September 2024
Published: 30 September 2024

Abstract:

This article presents a case study on improving process efficiency in a mining equipment part fabrication company. The company was facing issues concerning communication, organisation, and workflow processes. This study investigated that ineffective communication among departments was the major weakness which was responsible for the long lead or idle time. This lead time was a waste that affected the company’s productivity. A great amount of time was spent on non-value-added processes. The Kanban Centralised Communication System was implemented. Time study and value stream mapping were also used. A significant improvement in process efficiency from 34% to 85% was achieved by reducing lead time from 4200 minutes to 1680 minutes after streamlining the communication in the company using Kanban.

Keywords:

Lean manufacturing, Kanban, Optimization, Process efficiency, Production lead time, Value stream mapping

References:

[1] A. Belhadi, F.E. Touriki, S. Elfezazi, Evaluation of critical success factors (CSFs) to implement Lean implementation in SMES using AHP: A case study. International Journal of Lean Six Sigma, 10(3), 2019: 803-829. https://doi.org/10.1108/IJLSS-12-2016-0078
[2] K.S. Minh, S. Zailani, M. Iranmanesh, S. Heidari, Do lean manufacturing practices have a negative impact on job satisfaction. International Journal of Lean Six Sigma, 10(1), 2019: 257-274. https://doi.org/10.1108/IJLSS-11-2016-0072
[3] K. Das, M. Dixon, Lean manufacturing and service. CRC Press, Boca Raton, 2024. https://doi.org/10.1201/9781003121688
[4] S. Gupta, P. Chanda, A case study concerning the 5S Lean technique in a scientific equipment manufacturing company. Grey Systems: Theory and Application, 10(3), 2020:339-357. https://doi.org/10.1108/GS-01-2020-0004
[5] J.P. Davim, Progress in Lean Manufacturing. Springer Cham, 2018. https://doi.org/10.1007/978-3-319-73648-8
[6] L. Dubey, K. Gupta, Lean manufacturing based space utilization and motion waste reduction for efficiency enhancement in a machining shop: A case study. Applied Engineering Letters, 8(3), 2023: 121-130. https://doi.org/10.18485/aeletters.2023.8.3.4
[7] Y. Shi, X. Wang, X. Zhu, Lean manufacturing and productivity changes: the moderating role of R&D. International Journal of Productivity and Performance Management, 69(1), 2019:169-191. https://doi.org/10.1108/IJPPM-03-2018-0117
[8] S. Sahoo, S. Yadav, Lean implementation in small- and medium-sized enterprise. Benchmarking: An International Journal, 25(4), 2018: 1121-1147. https://doi.org/10.1108/BIJ-02-2017-0033
[9] S. Caceres-Gelvez, M.D. Arango-Serna, J.A. Zapata-Cortes, Evaluating the performance of a cellular manufacturing system proposal for sewing department of a sportswear manufacturing company: A simulation approach. Journal of Applied Research and Technology, 20(1), 2022: 68-83. https://doi.org/10.22201/icat.24486736e.2022.20.1.1335
[10] H.H. Berhe, Application of Kaizen philosophy for enhancing manufacturing industries’ performance: exploratory study of Ethiopian chemical industries. International Journal of Quality & Reliability Management, 39(1),2022: 204-235. https://doi.org/10.1108/IJQRM-09-2020-0328
[11] C. Hemalatha, K. Sankaranarayanasamy, N. Durairaaj, Lean and agile manufacturing for work-in-process (WIP) control. Materials Today Proceedings, 46(20), 2021: 10334-10338. https://doi.org/10.1016/j.matpr.2020.12.473
[12] J. Singh, H. Singh, A. Singh, J. Singh, Managing industrial operations by Lean thinking using value stream mapping and six sigma in manufacturing unit. Management Decision, 58(6), 2019: 1118-1148. https://doi.org/10.1108/MD-04-2017-0332
[13] C. Veres, L. Marian, M.S. Moica, K. Al-Akel, Case study concerning 5S method impact in an automotive company. Procedia Manufacturing, 22, 2018: 900-905. https://doi.org/10.1016/j.promfg.2018.03.127
[14] J.C-C. Chen, C.-Y. Cheng, Solving social loafing phenomenon through Lean-Kanban: A case study in non-profit organization. Journal of Organizational Change Management, 31(5), 2017: 984-1000. https://doi.org/10.1108/JOCM-12-2016-0299
[15] T. Bandoophanit, S. Pumprasert, The paradoxes of just-in-time system: an abductive analysis of a public food manufacturing and exporting company in Thailand. Management Research Review, 45(8), 2022: 1019-1043 https://doi.org/10.1108/MRR-04-2021-0262
[16] S. Gawande, J.S. Karajgikar, Implementation of Kanban, a Lean tool, In Switchgear Manufacturing Industry – A Case Study. Proceedings of the International Conference on Industrial Engineering and Operations Management, July 26-27, 2018, Paris, France, 2335-2348.
[17] M.A. Habib, R. Rizvan, S. Ahmed, Implementing Lean manufacturing for improvement of operational performance in a labeling and packaging plant: A case study in Bangladesh. Results in Engineering, 17, 2023:100818. https://doi.org/10.1016/j.rineng.2022.100818
[18] A.K. Das, M.C. Das, Productivity improvement using different Lean approaches in small and medium enterprises (SMEs). Management Science Letters, 13, 2023: 51-64. https://doi.org/10.5267/j.msl.2022.9.002
[19] P.A. Marques, D. Jorge, J. Reis, Using Lean to Improve Operational Performance in a Retail Store and E-Commerce Service: A Portuguese Case Study. Sustainability, 14(10), 2022: 5913. https://doi.org/10.3390/su14105913
[20] F. Khair, M. A. S. Putra, I. Rizkia, Improvement and analysis of aircraft maintenance flow process using Lean manufacturing, PDCA, PICA, and VSM for sustainable operation system. IOP Conf. Series: Earth and Environmental Science, 1324, 2024: 012071. https://doi.org/10.1088/17551315/1324/1/012071
[21] I. Rizkya, K. Syahputri, R.M. Sari, D.S. Situmorang, Lean Manufacturing: Waste Analysis in Crude Palm Oil Process. IOP Conference Series: Materials Science and Engineering, 851, 2020: 012058. https://doi.org/10.1088/1757-899X/851/1/012058
[22] A. Pradeep, K. Balaji, Reduction of lead time in an automobile rubber component manufacturing process through value stream mapping. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(6), 2022:2470-2479. https://doi.org/10.1177/09544089221094094
[23] D. Cabezas, I. Muelle, E. Avalos-Ortecho, Implementation of Lean Manufacturing to Increase the Machine’s Availability of a Metalworking Company. 7 th North American International Conference on Industrial Engineering and Operations Management, June 12-14, 2022, Orlando, Florida, USA.
[24] W. Kosasih, I.K. Sriwana, E.C. Sari, C.O. Doaly, Applying value stream mapping tools and kanban system for waste identification and reduction (case study: a basic chemical company). IOP Conference Series: Materials Science and Engineering, 528, 2019: 012050. https://doi.org/10.1088/1757-899X/528/1/012050
[25] B.S. Patel, M. Sambasivan, R. Panimalar, R. Krishna, A relationship analysis of drivers and barriers of Lean manufacturing. The TQM Journal, 34(5), 2022: 845-876. https://doi.org/10.1108/TQM-12-2020-0296

© 2024 by the author. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 3
September 2024

Last Edition

Volume 9
Number 3
September 2024

How to Cite

V.H. Quan, Research and Optimization of Sport Utility Vehicle Aerodynamic Design. Applied Engineering Letters, 9(2), 2024: 105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

More Citation Formats

Quan, V.H. (2024). Research and Optimization of Sport Utility Vehicle Aerodynamic Design. Applied Engineering Letters, 9(2), 105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

Quan, Vu Hai, “Research and Optimization of Sport Utility Vehicle Aerodynamic Design.“ Applied Engineering Letters, vol. 9, no. 2, pp. 2024, 105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

Quan, Vu Hai, 2024. “Research and Optimization of Sport Utility Vehicle Aerodynamic Design.“ Applied Engineering Letters, 9 (2):105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

Quan, V.H. (2024). Research and Optimization of Sport Utility Vehicle Aerodynamic Design. Applied Engineering Letters, 9(2), pp. 105-115.
doi: 10.46793/aeletters.2024.9.2.5.