Journal Menu
Archive
Last Edition

Thermal source effect on the natural convection of a nanofluid within a triangular cavity

Authors:

Mohamed Amine Belmiloud1

Said Mekroussi1

Bendaoud Mebarek2

Hadj Madani Meghazi2

Momen S.M. Saleh1

1Research Laboratory of Industrial Technologies, Department of Mechanical Engineering, University of Tiaret, 14000, Algeria
2Research Laboratory of Artificial Intelligence and Systems (LRIAS), University of Tiaret, Algeria

Received: 28 April 2024
Revised: 19 June 2024
Accepted: 27 June 2024
Published: 30 June 2024

Abstract:

Natural convection is numerically studied in a triangular cavity whose inclined walls that is isothermal at temperature TC, while its base is thermally insulated. The cavity contains a hot isothermal cylindrical heat source TH of diameter D. In this study, we used the nanofluid (water + TiO2). The nanoparticle volume fraction is varied within the range 0.01 ≤ ϕ ≤ 0.05, and the Rayleigh number is set between 103 and 106. The main objective of this study is to explore the impact of nanoparticle concentration, Rayleigh number (Ra), and heat source position (h) on the enhancement of convective thermal transfer. The simulation results show that thermal exchange improves with increasing Ra, heat source diameter, and nanoparticle volume fraction (ϕ).

Keywords:

Natural convection, Triangular cavity, Thermal exchange, Nanofluids, TiO2, Modelling

References:

[1] K.V. Wong O. De Leon, Applications of nanofluids: current and future. Advances in Mechanical Engineering, 2, 2010: 519659. https://doi.org/10.1155/2010/519659
[2] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 2000: 58‑64. https://doi.org/10.1016/S0142-727X(99)00067-3
[3] Y. Xuan, Q. Li, Investigation on convective heat transfer and flow features of nanofluids. ASME Journal Heat and Mass Transfer, 125(1), 2003: 151-155. https://doi.org/10.1115/1.1532008
[4] N. Putra, W. Roetzel, S.K. Das, Natural convection of nano-fluids. Heat and Mass Transfer, 39(8), 2003: 775‑784. https://doi.org/10.1007/s00231-002-0382-z
[5] V. Bianco, F. Chiacchio, O. Manca, S. Nardini, Numerical investigation of nanofluids forced convection in circular tubes. Applied Thermal Engineering, 29(17‑18), 2009: 3632-3642.
https://doi.org/10.1016/j.applthermaleng.2009.06.019
[6] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46(19), 2003: 3639‑3653. https://doi.org/10.1016/S0017-9310(03)00156-X
[7] M. Shafahi, V. Bianco, K. Vafai, O. Manca, Thermal performance of flat-shaped heat pipes using nanofluids. International Journal of Heat and Mass Transfer, 53(7‑8), 2010: 1438‑1445.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.007
[8] N.Z. Khan, S. Bilal, L. Kolsi, A.S. Shflot, M.Y. Malik, A case study on entropy generation in MHD nanofluid flow in L-shaped triangular corrugated permeable enclosure. Case Studies in Thermal Engineering, 59, 2024:104487. https://doi.org/10.1016/j.csite.2024.104487
[9] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol- based nanofluids containing copper nanoparticles. Applied Physics Letter, 78(6), 2001: 718‑720. https://doi.org/10.1063/1.1341218
[10] S. Lee, S.-S. Choi, Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME Journal Heat and Mass Transfer, 121(2), 1999: 280-289.
https://doi.org/10.1115/1.2825978
[11] S.P. Jang S.U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letter, 84(21), 2004: 4316‑4318. https://doi.org/10.1063/1.1756684
[12] S.-E. Ouyahia, K. B. Youb, W. Berabou, M. Benzema, A. Boudiaf, Convection naturelle d’un nanofluide confiné dans une enceinte triangulaire: Effet du fractionnement et de la position de la source de chaleur. CFM 201723ème Congrès Français de Mécanique, August 2017, Lille, France, hal-03465338. (in French)
[13] M.S. Khan, S. Ahmad, Z. Shah, N. Vrinceanu, M.H. Alshehri, Natural convection heat transfer of a hybrid nanofluid in a permeable quadrantal enclosure with heat generation. Case Studies in Thermal Engineering, 56, 2024: 104207. https://doi.org/10.1016/j.csite.2024.104207
[14] B. Ghasemi S M. Aminossadati, Brownian motion of nanoparticles in a triangular enclosure with natural convection. International Journal of Thermal Sciences, 49(6), 2010: 931‑940.
https://doi.org/10.1016/j.ijthermalsci.2009.12.017
[15] B. Boudjeniba, A. Laouer, S. Laouar, E.H. Mezaache, Transition to Chaotic Natural Convection of Cu-water Nanofluid in an Inclined Square Enclosure. International Journal of Heat and Technology, 37(2), 2019: 413-422. https://doi.org/10.18280/ijht.370206
[16] H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29(5), 2008: 1326‑1336.
https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009
[17] N. Vedavathi, K. Venkatadri, S. Fazuruddin, G. S.S. Raju, Natural convection flow in semi-trapezoidal porous enclosure filled with alumina-water nanofluid using Tiwari and Das’ nanofluid model. Engineering Transactions, 70(4), 2022: 303-318. https://doi.org/10.24423/EngTrans.1285.20221004
[18] M. S. Saleh, S. Mekroussi, S. Kherris, D. Zebbar, N. Belghar, A numerical investigation of the effect of sinusoidal temperature on mixed convection flow in a cavity filled with a nanofluid with moving vertical walls. Heat Transfer, 52(1), 2022: 7-27. https://doi.org/10.1002/htj.22683
[19] B. Abbou, S. Mekroussi, H. Ameur, S. Kherris, Effect of aspect ratio and nonuniform temperature on mixed convection in a double lid-driven cavity. Numerical Heat Transfer, Part A: Applications, 83(8), 2022:237-247. https://doi.org/10.1080/10407782.2022.2091365
[20] L. Saidi, S. Mekroussi, S. Kherris, D. Zebbar, B. Mébarki, A Numerical Investigation of the Free Flow in a Square Porous Cavity with Non-Uniform Heating on the Lower Wall. Engineering, Technology & Applied Science Research, 12(1), 2022: 7982‑7987. https://doi.org/10.48084/etasr.4604
[21] C.H. Maatki, K. Ghachem, L. Kolsi, N. Borjini, H. Ben Aissia, Entropy generation of double diffusive natural convection in a three dimensional differentially heated enclosure. International Journal of Engineering, 27(2), 2014: 215‑226.
[22] K. Ghachem, W. Hassen, C. Maatki, L. Kolsi, A. A. Al-Rashed, M. Naceur, Numerical simulation of 3D natural convection and entropy generation in a cubic cavity equipped with an adiabatic baffle. International Journal of Heat and Technology, 36(3), 2018: 1047‑1054. https://doi.org/10.18280/ijht.360335
[23] A.S. Dogonchi, A.J. Chamkha, D.D. Ganji, A numerical investigation of magnetohydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. Journal of Thermal Analysis and Calorimetry, 135, 2019: 2599-2611. https://doi.org/10.1007/s10973-018-7339-z
[24] M. Hashemi-Tilehnoee, A.S. Dogonchi, S.M. Seyyedi, A.J. Chamkha, D.D. Ganji, Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. Journal of Thermal Analysis and Calorimetry, 141, 2020: 2033‑2045. https://doi.org/10.1007/s10973-019-09220-6
[25] T. Tayebi A. J. Chamkha, Magnetohydrodynamic natural convection heat transfer of hybrid nanofluid in a square enclosure in the presence of a wavy circular conductive cylinder. Journal of Thermal Science and Engineering Applications, 12(3), 2020: 031009. https://doi.org/10.1115/1.4044857
[26] K. Khanafer K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54(19‑20), 2011: 4410‑4428.
https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048
[27] T. Hayase, J.A.C. Humphrey, R. Greif, A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures. Journal of Computational Physics, 98(1), 1992: 108‑118. https://doi.org/10.1016/0021-9991(92)90177-Z
[28] A. Arefmanesh, M. Amini, M. Mahmoodi, M. Najafi, Buoyancy-driven heat transfer analysis in two-square duct annuli filled with a nanofluid. European Journal of Mechanics – B/Fluid, 33, 2012: 95‑104.
https://doi.org/10.1016/j.euromechflu.2011.11.004

© 2024 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 3
September 2024

Last Edition

Volume 9
Number 3
September 2024

How to Cite

M.A. Belmiloud, S. Mekroussi, B. Mebarek, H.M. Meghazi, M.S.M. Saleh, Thermal Source Effect on the Natural Convection of a Nanofluid Within a Triangular Cavity. Applied Engineering Letters, 9(2), 2024: 94-104.
https://doi.org/10.46793/aeletters.2024.9.2.4

More Citation Formats

Belmiloud, M.A., Mekroussi, S., Mebarek, B., Meghazi, H.M., & Saleh, M.S.M. (2024). Thermal Source Effect on the Natural Convection of a Nanofluid Within a Triangular Cavity. Applied Engineering Letters, 9(2), 94-104.
https://doi.org/10.46793/aeletters.2024.9.2.4

Belmiloud, Mohamed Amine, et al. “Thermal Source Effect on the Natural Convection of a Nanofluid Within a Triangular Cavity.“ Applied Engineering Letters, vol. 9, no. 2, 2024, pp. 94-104.
https://doi.org/10.46793/aeletters.2024.9.2.4

Belmiloud, Mohamed Amine, Said Mekroussi, Bendaoud Mebarek, Hadj Madani Meghazi, and Momen S.M. Saleh. 2024. “Thermal Source Effect on the Natural Convection of a Nanofluid Within a Triangular Cavity.“ Applied Engineering Letters, 9 (2): 94-104.
https://doi.org/10.46793/aeletters.2024.9.2.4

Belmiloud, M.A., Mekroussi, S., Mebarek, B., Meghazi, H.M. and Saleh, M.S.M. (2024). Thermal Source Effect on the Natural Convection of a Nanofluid Within a Triangular Cavity. Applied Engineering Letters, 9(2), pp. 94-104.
doi: 10.46793/aeletters.2024.9.2.4.

Thermal source effect on the natural convection of a nanofluid within a triangular cavity

Authors:

Mohamed Amine Belmiloud1

Said Mekroussi1

Bendaoud Mebarek2

Hadj Madani Meghazi2

Momen S.M. Saleh1

1Research Laboratory of Industrial Technologies, Department of Mechanical Engineering, University of Tiaret, 14000, Algeria
2Research Laboratory of Artificial Intelligence and Systems (LRIAS), University of Tiaret, Algeria

Received: 28 April 2024
Revised: 19 June 2024
Accepted: 27 June 2024
Published: 30 June 2024

Abstract:

Natural convection is numerically studied in a triangular cavity whose inclined walls that is isothermal at temperature TC, while its base is thermally insulated. The cavity contains a hot isothermal cylindrical heat source TH of diameter D. In this study, we used the nanofluid (water + TiO2). The nanoparticle volume fraction is varied within the range 0.01 ≤ ϕ ≤ 0.05, and the Rayleigh number is set between 103 and 106. The main objective of this study is to explore the impact of nanoparticle concentration, Rayleigh number (Ra), and heat source position (h) on the enhancement of convective thermal transfer. The simulation results show that thermal exchange improves with increasing Ra, heat source diameter, and nanoparticle volume fraction (ϕ).

Keywords:

Natural convection, Triangular cavity, Thermal exchange, Nanofluids, TiO2, Modelling

References:

[1] K.V. Wong O. De Leon, Applications of nanofluids: current and future. Advances in Mechanical Engineering, 2, 2010: 519659. https://doi.org/10.1155/2010/519659
[2] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 2000: 58‑64. https://doi.org/10.1016/S0142-727X(99)00067-3
[3] Y. Xuan, Q. Li, Investigation on convective heat transfer and flow features of nanofluids. ASME Journal Heat and Mass Transfer, 125(1), 2003: 151-155. https://doi.org/10.1115/1.1532008
[4] N. Putra, W. Roetzel, S.K. Das, Natural convection of nano-fluids. Heat and Mass Transfer, 39(8), 2003: 775‑784. https://doi.org/10.1007/s00231-002-0382-z
[5] V. Bianco, F. Chiacchio, O. Manca, S. Nardini, Numerical investigation of nanofluids forced convection in circular tubes. Applied Thermal Engineering, 29(17‑18), 2009: 3632-3642.
https://doi.org/10.1016/j.applthermaleng.2009.06.019
[6] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46(19), 2003: 3639‑3653. https://doi.org/10.1016/S0017-9310(03)00156-X
[7] M. Shafahi, V. Bianco, K. Vafai, O. Manca, Thermal performance of flat-shaped heat pipes using nanofluids. International Journal of Heat and Mass Transfer, 53(7‑8), 2010: 1438‑1445.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.007
[8] N.Z. Khan, S. Bilal, L. Kolsi, A.S. Shflot, M.Y. Malik, A case study on entropy generation in MHD nanofluid flow in L-shaped triangular corrugated permeable enclosure. Case Studies in Thermal Engineering, 59, 2024:104487. https://doi.org/10.1016/j.csite.2024.104487
[9] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol- based nanofluids containing copper nanoparticles. Applied Physics Letter, 78(6), 2001: 718‑720. https://doi.org/10.1063/1.1341218
[10] S. Lee, S.-S. Choi, Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME Journal Heat and Mass Transfer, 121(2), 1999: 280-289.
https://doi.org/10.1115/1.2825978
[11] S.P. Jang S.U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letter, 84(21), 2004: 4316‑4318. https://doi.org/10.1063/1.1756684
[12] S.-E. Ouyahia, K. B. Youb, W. Berabou, M. Benzema, A. Boudiaf, Convection naturelle d’un nanofluide confiné dans une enceinte triangulaire: Effet du fractionnement et de la position de la source de chaleur. CFM 201723ème Congrès Français de Mécanique, August 2017, Lille, France, hal-03465338. (in French)
[13] M.S. Khan, S. Ahmad, Z. Shah, N. Vrinceanu, M.H. Alshehri, Natural convection heat transfer of a hybrid nanofluid in a permeable quadrantal enclosure with heat generation. Case Studies in Thermal Engineering, 56, 2024: 104207. https://doi.org/10.1016/j.csite.2024.104207
[14] B. Ghasemi S M. Aminossadati, Brownian motion of nanoparticles in a triangular enclosure with natural convection. International Journal of Thermal Sciences, 49(6), 2010: 931‑940.
https://doi.org/10.1016/j.ijthermalsci.2009.12.017
[15] B. Boudjeniba, A. Laouer, S. Laouar, E.H. Mezaache, Transition to Chaotic Natural Convection of Cu-water Nanofluid in an Inclined Square Enclosure. International Journal of Heat and Technology, 37(2), 2019: 413-422. https://doi.org/10.18280/ijht.370206
[16] H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29(5), 2008: 1326‑1336.
https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009
[17] N. Vedavathi, K. Venkatadri, S. Fazuruddin, G. S.S. Raju, Natural convection flow in semi-trapezoidal porous enclosure filled with alumina-water nanofluid using Tiwari and Das’ nanofluid model. Engineering Transactions, 70(4), 2022: 303-318. https://doi.org/10.24423/EngTrans.1285.20221004
[18] M. S. Saleh, S. Mekroussi, S. Kherris, D. Zebbar, N. Belghar, A numerical investigation of the effect of sinusoidal temperature on mixed convection flow in a cavity filled with a nanofluid with moving vertical walls. Heat Transfer, 52(1), 2022: 7-27. https://doi.org/10.1002/htj.22683
[19] B. Abbou, S. Mekroussi, H. Ameur, S. Kherris, Effect of aspect ratio and nonuniform temperature on mixed convection in a double lid-driven cavity. Numerical Heat Transfer, Part A: Applications, 83(8), 2022:237-247. https://doi.org/10.1080/10407782.2022.2091365
[20] L. Saidi, S. Mekroussi, S. Kherris, D. Zebbar, B. Mébarki, A Numerical Investigation of the Free Flow in a Square Porous Cavity with Non-Uniform Heating on the Lower Wall. Engineering, Technology & Applied Science Research, 12(1), 2022: 7982‑7987. https://doi.org/10.48084/etasr.4604
[21] C.H. Maatki, K. Ghachem, L. Kolsi, N. Borjini, H. Ben Aissia, Entropy generation of double diffusive natural convection in a three dimensional differentially heated enclosure. International Journal of Engineering, 27(2), 2014: 215‑226.
[22] K. Ghachem, W. Hassen, C. Maatki, L. Kolsi, A. A. Al-Rashed, M. Naceur, Numerical simulation of 3D natural convection and entropy generation in a cubic cavity equipped with an adiabatic baffle. International Journal of Heat and Technology, 36(3), 2018: 1047‑1054. https://doi.org/10.18280/ijht.360335
[23] A.S. Dogonchi, A.J. Chamkha, D.D. Ganji, A numerical investigation of magnetohydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. Journal of Thermal Analysis and Calorimetry, 135, 2019: 2599-2611. https://doi.org/10.1007/s10973-018-7339-z
[24] M. Hashemi-Tilehnoee, A.S. Dogonchi, S.M. Seyyedi, A.J. Chamkha, D.D. Ganji, Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. Journal of Thermal Analysis and Calorimetry, 141, 2020: 2033‑2045. https://doi.org/10.1007/s10973-019-09220-6
[25] T. Tayebi A. J. Chamkha, Magnetohydrodynamic natural convection heat transfer of hybrid nanofluid in a square enclosure in the presence of a wavy circular conductive cylinder. Journal of Thermal Science and Engineering Applications, 12(3), 2020: 031009. https://doi.org/10.1115/1.4044857
[26] K. Khanafer K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54(19‑20), 2011: 4410‑4428.
https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048
[27] T. Hayase, J.A.C. Humphrey, R. Greif, A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures. Journal of Computational Physics, 98(1), 1992: 108‑118. https://doi.org/10.1016/0021-9991(92)90177-Z
[28] A. Arefmanesh, M. Amini, M. Mahmoodi, M. Najafi, Buoyancy-driven heat transfer analysis in two-square duct annuli filled with a nanofluid. European Journal of Mechanics – B/Fluid, 33, 2012: 95‑104.
https://doi.org/10.1016/j.euromechflu.2011.11.004

© 2024 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 3
September 2024

Last Edition

Volume 9
Number 3
September 2024

How to Cite

M.A. Belmiloud, S. Mekroussi, B. Mebarek, H.M. Meghazi, M.S.M. Saleh, Thermal Source Effect on the Natural Convection of a Nanofluid Within a Triangular Cavity. Applied Engineering Letters, 9(2), 2024: 94-104.
https://doi.org/10.46793/aeletters.2024.9.2.4

More Citation Formats

Belmiloud, M.A., Mekroussi, S., Mebarek, B., Meghazi, H.M., & Saleh, M.S.M. (2024). Thermal Source Effect on the Natural Convection of a Nanofluid Within a Triangular Cavity. Applied Engineering Letters, 9(2), 94-104.
https://doi.org/10.46793/aeletters.2024.9.2.4

Belmiloud, Mohamed Amine, et al. “Thermal Source Effect on the Natural Convection of a Nanofluid Within a Triangular Cavity.“ Applied Engineering Letters, vol. 9, no. 2, 2024, pp. 94-104.
https://doi.org/10.46793/aeletters.2024.9.2.4

Belmiloud, Mohamed Amine, Said Mekroussi, Bendaoud Mebarek, Hadj Madani Meghazi, and Momen S.M. Saleh. 2024. “Thermal Source Effect on the Natural Convection of a Nanofluid Within a Triangular Cavity.“ Applied Engineering Letters, 9 (2): 94-104.
https://doi.org/10.46793/aeletters.2024.9.2.4

Belmiloud, M.A., Mekroussi, S., Mebarek, B., Meghazi, H.M. and Saleh, M.S.M. (2024). Thermal Source Effect on the Natural Convection of a Nanofluid Within a Triangular Cavity. Applied Engineering Letters, 9(2), pp. 94-104.
doi: 10.46793/aeletters.2024.9.2.4.