Journal Menu
Last Edition

Improving the performance of hybrid biocomposite materials using epoxy, vinyl ester and polyimide polymer matrix: comparative study


Mohamed Alami1

Allel Mokaddem1,2

Mohammed Belkheir1,2

Mehdi Rouissat1,3

Bendouma Doumi4

Djamila Ziani1

1Instrumentation and Advanced Materials Laboratory, Institute of Science, University Center of El Bayadh, 32000, Algeria
2University Center of El Bayadh, Bayadh 32000, Algeria
3Laboratoire STIC (Université de Tlemcen), Tlemcen 13000, Algeria
4Faculty of Sciences, University of Saida Dr. Moulay Tahar, Saida 20000, Algeria

Received: 10 January 2024
Revised: 23 April 2024
Accepted: 9 May 2024
Published: 30 June 2024


The present study aims to assess the impact of alfa and date palm natural fibers as reinforcement for epoxy, vinyl ester, and polyimide polymer (Alfa-Date palm/epoxy, Alfa-Date palm/vinyl ester, and Alfa-date palm/polyimide) through a genetic approach. The study employs a genetic simulation rooted in the Weibull formalism, employing genetic operators such as selection, crossing, and mutation for a nuanced evaluation of the damage at the fiber-matrix interface across the studied materials. The genetic algorithm results authentically capture the intrinsic behaviour of these materials, emphasising key mechanical properties like Young’s Modulus, deformation, and stress at break. The obtained results highlight that the matrix showing the highest Young’s modulus value at its fiber- matrix interface exhibits superior strength. These conclusions align with contemporary advancements in natural fiber-reinforced composite materials tailored for diverse industries and eco-friendly applications.


Natural fibres, Alfa, Palm date, Epoxy, Vinyl Ester, Polyimide


[1] H. Perera, H. Banu, Recent developments in composite reinforcement using date palm fibers for improved performance through physical and chemical modifications. International Journal of Polymer Analysis and Characterization, 27(7), 2022: 446-463.
[2] L. Klaai, D. Hammiche, A. Boukerrou, F.E. Arrakhiz, Assessment of Natural Cellulosic Fibers Derived From Agricultural By-Product. Materials Today Proceedings, 53(1), 2022: 260-264.
[3] A. Vinod, M.R. Sanjay, S. Siengchin, Recently Explored Natural Cellulosic Plant Fibers 2018–2022: A Potential Raw Material Resource for Lightweight Composites. Industrial Crops and Products, 192, 2023:116099.
[4] H. Taghipoor, J. Mirzaei, Statistical Predicting and Optimization of the Tensile Properties of Natural Fiber Bio-Composites. Polymer Bulletin, 80, 2023: 13217-13241.
[5] N. Bekraoui, Z. El Qoubaa, H. Chouiyakh, M. Faqir, E. Essadiqi, The Influence of Structural and Chemical Parameters on Mechanical Properties of Natural Fibers: A Statistical Exploratory Analysis. Journal of Polymer Engineering, 42(5), 2022: 385-394.
[6] A. Atmakuri, A. Palevicius, A. Vilkauskas, G. Janusas, Numerical and Experimental Analysis of Mechanical Properties of Natural-Fiber- Reinforced Hybrid Polymer Composites and the Effect on Matrix Material. Polymers, 14(13), 2022: 2612.
[7] D. Baidya, S. Dhopte, M. Bhattacharjee, Natural Fiber Selection Using Novel Hybridized MCDM Technique to Use as Substrate for Flexible Sensor. Materials Letters, 341, 2023: 134258.
[8] S.P. Singh, A. Dutt, C.K. Hirwani, Experimental and Numerical Analysis of Different Natural Fiber Polymer Composite. Materials and Manufacturing Processes, 38(3), 2023: 322-332.
[9] N. Poyyamozhi, A. Sivanantham, N. Mukilarasan, K. Gopal, M.V. De Poures, R. Venkatesh, S. Naveen, M. Perumal, Ecosystem Sustainability and Conservation of Waste Natural Fiber Strengthen Epoxy Composites for Lightweight Applications. Environmental Quality Management, 2023: 1-6.
[10] A.K. Maurya, G. Manik, Advances Towards Development of Industrially Relevant Short Natural Fiber Reinforced and Hybridized Polypropylene Composites for Various Industrial Applications: A Review. Journal of Polymer Research, 30(1), 2023: 47.
[11] A. Mahajan, V. Binaz, I. Singh, N. Arora, Selection of Natural Fiber for Sustainable Composites Using Hybrid Multi Criteria Decision Making Techniques. Composites Part C: Open Access, 7, 2022: 100224.
[12] B. Mushtaq, S. Ahmad, F. Ahmad, Y. Nawab, Alternative Natural Fibers for Biocomposites. Natural Fibers to Composites. Engineering Materials. Springer, Cham, 2022: 1-18.
[13] B. Achour, A. Ziadi, L. Belarbi, A. Mokaddem, A. Lousdad, Mechanical and Morphological Characterization of Recycled HD-PE Bio- Composites Based on Alfa Fibers And Natural Pozzolan. Journal of Polymer Engineering, 43(1), 2022: 27-36.
[14] P. Sahu, M.K. Gupta, A Review on the Properties of Natural Fibres and Its Bio- Composites: Effect of Alkali Treatment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(1), 2019: 198-217.
[15] S. Bousshine, M. Ouakarrouch, A. Bybi, N. Laaroussi, M. Garoum, A. Tilioua, Acoustical and Thermal Characterization of Sustainable Materials Derived From Vegetable, Agricultural, and Animal Fibers. Applied Acoustics, 187, 2022: 108520.
[16] M. Lamrani, N. Laaroussi, A.A. Lkouen, M. Khalfaoui, Thermal and Mechanical Characterization of Composite Building Material Based on Clay and Date Palm Fibers. Plant Fibers, their Composites, and Applications. Woodhead Publishing, 2022, pp.305-322.
[17] C. Mouhous, W. Yahiaoui, S. Kenai, Performance of Local Date Palm Fibers in Cementitious Materials. MRS Advances, 26, 2023: 1-8.
[18] Z. Ranjbar, B. Ranjbar, S. Foroughirad, Biopolymers in Automotive Industry. Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham, 2022: 271-288.
[19] K. Shaker, Y. Nawab, Bast and grass fibers. Lignocellulosic Fibers. Springer Briefs in Materials. Springer, Cham, 2022, pp.33-44.
[20] S. Punia Bangar, R.A. Ilyas, N. Chaudhary, S.B. Dhull, A. Chowdhury, J.M. Lorenzo, Plant-Based Natural Fibers for Food Packaging: A Green Approach to the Reinforcement of Biopolymers. Journal of Polymers and the Environment, 31, 2023: 5029-5049.
[21] A. Akhzeroun, A. Semcha, A. Bezazi, H. Boumediri, P.N. Reis, F. Scarpa, Development and Characterization of a New Sustainable Composite Reinforced With Date Palm Stems for Rehabilitation and Reconstruction of Earthen Built Heritage. Composite structures, 316, 2023: 117015.
[22] V. Dorugade, M. Taye, S.A. Qureshi, T. Agazie, B. Seyoum, B. Abebe, S. Komarabathina, Agrotextiles: Important Characteristics of Fibres and Their Applications–A Review. Journal of Natural Fibers, 20(2), 2023: 2211290.
[23] S.M. Rangappa, S. Siengchin, J. Parameswaranpillai, M. Jawaid, T. Ozbakkaloglu, Lignocellulosic Fiber Reinforced Composites: Progress, Performance, Properties, Applications, and Future Perspectives. Polymer Composites, 43(2), 2022: 6456-6491.
[24] S. Awad, Utilization of Date Palm Tree Fibres As Biomass Resources for Developing Sustainable Composites for Industrial Applications, Ph.D. Thesis. Brunel University, London, 2022.
[25] S.O. Ismail, E. Akpan, H.N. Dhakal, Review on Natural Plant Fibres and Their Hybrid Composites for Structural Applications: Recent Trends and Future Perspectives. Composites Part C: Open Access, 9, 2022: 100322.
[26] N. Saba, M. Jawaid, O.Y. Alothman, M.T. Paridah, A. Hassan, Recent Advances in Epoxy Resin, Natural Fiber-Reinforced Epoxy Composites and Their Applications. Journal of Reinforced Plastics and Composites, 35(6), 2016: 447-470.
[27] S.N. Sarmin, M. Jawaid, S.A. Zaki, A.M. Radzi, H. Fouad, R. Khiari, S. Rahayu, M.H.M. Amini, Enhancing the Properties of Date Palm Fibre Reinforced Bio-Epoxy Composites With Chitosan–Synthesis, Mechanical Properties, and Dimensional Stability. Journal of King Saud University – Science, 35(7), 2023: 102833.
[28] S. Messaoui, K.E. Borchani, L. Ghali, N. Guermazi, N. Haddar, S. Msahli, Effect of a New Composition Ratio and of a New Chemical Treatment on Natural Alfa Fiber/Polypropylene Composites Manufacturing and Their Mechanical Properties. Journal of Natural Fibers, 19(15), 2022: 10126-10141.
[29] E.W Fenta, A.A. Tsegaw, Study the Effects of Fiber Loading and Orientation on the Tensile Properties of Date Palm Fiber-Reinforced Polyester Composite. Polymer Bulletin, 81, 2024: 1549-1562.
[30] M. Belkheir, M. Rouissat, A. Mokaddem, A. Boutaous, Effects of Date (Phoenix Dactylifera-DPF) and Doum (Hyphaene Thebaica) Palm Natural Fibers Reinforced Polymer Matrix on Damage of Advanced Biocomposites Materials. Strength of Materials, 2024.
[31] K. Saada, M. Zaoui, S. Amroune, R. Benyettou, A. Hechaichi, M. Jawaid, M. Hashem, I. Uddin, Exploring Tensile Properties of Bio Composites Reinforced Date Palm Fibers Using Experimental and Modelling Approaches. Materials Chemistry and Physics, 314, 2024: 128810.
[32] M.G. Sadek, M.Y. Abdellah, A.H. Backar, G.T. Abdel-Gaber, A Review on Failure Analysis of Date Palm Fiber Reinforced Polymer Composites. SVU-International Journal of Engineering Sciences and Applications, 5(1), 2024: 99-110.
[33] A.H. Birniwa, S.S. Abdullahi, M. Ali, R.E.A. Mohammad, A.H. Jagaba, M. Amran, S. Avudaiappan, N. Maureira-Carsalade, E.I.S. Flores, Recent Trends in Treatment and Fabrication of Plant-Based Fiber-Reinforced Epoxy Composite: A Review. Journal of Composites Science, 7(3), 2023: 120.
[34] A. Gherfi, A. Merabet, R. Belakroum, M. Kadja, T. Moussa, M. Lachi, G. Polidori, C. Maalouf, Hygrothermal Characterization of Lightweight Biosourced Composites Based on Date Palm Fiber and Lime. Wood Material Science & Engineering, 2024: 1–7.
[35] A. Elhadi, S. Amroune, M. Slamani, M. Arslane, M. Jawahid, Assessment and Analysis of Drilling-Induced Damage In Jute/Palm Date Fiber-Reinforced Polyester Hybrid Composite. Biomass Conversion and Biorefinery, 2024.
[36] H. Chkala, I. Kirm, S. Ighir, A. Ourmiche, M. Chigr, N.-E. El Mansouri, Preparation and Characterization of Eco-Friendly Composite Based on Geopolymer and Reinforced With Date Palm Fiber. Arabian Journal of Chemistry, 17(2), 2024: 105510.
[37] S.N. Sarmin, M. Jawaid, S.A. Zaki, M.R. Ali, H. Fouad, R. Khiari, S. Rahayu, N. Salim, The effect of eggshell fillers on the physical, mechanical, and morphological properties of date palm fibre reinforced bio epoxy composites. Journal of Polymers and the Environment, 31, 2023: 5015-5027.
[38] M. Khaldi, A. Vivet, C. Poilâne, B.B. Doudou, J. Chen, A. Bourmaud, Z. Sereir, Rupture Study of an Alfa Plant Fiber Composite. Materials Conference Eco-material Colloquium, Montpellier, France, 2014, pp.24-28.
[39] M. Dallel, Evaluation of the textile potential of Alfa fibers (Stipa Tenacissima L.): Physico- chemical characterization of fiber to yarn, Ph.D. Thesis. Université de Haute Alsace, Mulhouse, France, 2012.
[40] S.B. Brahim, R.B. Cheikh, Influence of Fibre Orientation and Volume Fraction on the Tensile Properties of Unidirectional Alfa- Polyester Composite. Composites Science and Technology, 67(1), 2007: 140-147.
[41] M. Harche D. Bounaga, Comparative Study of the Fibrous Tissue in the “Stipatenacissima L” Alpha Leaf. National History Society Bulletin, Algiers, 1979: 113-120.
[42] B. Bouiri, M. Amrani, Production of dissolving grade pulp from alfa, BioResources, 5(1), 2010: 291-302.
[43] M.C. Paiva, I. Ammar, A.R. Campos, R.B. Cheikh, A.M. Cunha, Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology, 67(6), 2007: 1132-11388.
[44] D. Belaid, Date palm cultivation in Algeria. Collection: Agronomic Sciences and Techniques. National Higher Agronomic School (ENSA), El Harrach, Algeria, 2015.
[45] A. Si Bennasseur, Reference for the Technical Management of the date palm (Phoenix dactylifera L.), 2005: 102-112. (Accessed: 27 December 2023)
[46] Epoxy Technology, Application guide, 4.0 – Thermogravimetric analysis (TGA). Kummer Semiconductor Technology, Suisse, p.6. (Accessed: 27 December 2023)
[47] B. Agoudjil, A. Benchabane, A. Boudenne, L. Ibos, M. Fois, Renewable Materials to Reduce Building Heat Loss: Characterization of Date Palm Wood. Energy and Buildings, 43(2-3), 2011: 491-497.
[48] F.M. Al-Oqla, O.Y. Alothman, M. Jawaid, S.M. Sapuan, M.H. Es-Saheb, Processing and Properties of Date Palm Fibers and Its Composites. Biomass and Bioenergy. Springer, Cham, 2014.
[49] Z. Ahmad, M.P. Ansell, D. Smedley, Effect of Nano and MicroParticle Additions on Moisture Absorption in Thixotropic Room Temperature Cure Epoxy-Based Adhesives for Bonded-in Timber Connections. International Journal of Adhesion and Adhesives, 30(6), 2010: 448-455.
[50] S.J. Tucker, B. Fu, S. Kar, S. Heinz, J.S. Wiggins, Ambient cure POSS–epoxy matrices for marine composites. Composites Part A: Applied Science and Manufacturing, 41(10), 2010: 1441-1446.
[51] E. Desnoes, Development of renewable thermosetting resins and composite materials, Ph.D. Thesis. University of Quebec at Trois- Rivières, Quebec, France, 2023.
[52] F.-L. Jin, S.-J. Park, Thermal properties of epoxy resin/filler hybrid composites. Polymer Degradation and Stability, 97(11), 2012: 2148- 2153.
[53] F.-L. Jin, S.-J. Park, Thermal stability of trifunctional epoxy resins modified with nanosized calcium carbonate. Bulletin of the Korean Chemical Society, 30(2), 2009: 334-338.
[54] B. Benmokrane, Composite materials in construction and rehabilitation, (Manual 3), GCI 717. University of Sherbrooke, Quebec, France, 2013.
[55] S. Ziaee, G.R. Palmese, Effects of Temperature on Cure Kinetics and Mechanical Properties of Vinyl–Ester Resins. Journal of Polymer Science Part B: Polymer Physics, 37(7), 1999: 725-744.<725::AID-POLB23>3.0.CO;2-E
[56] S.M. Lee, Reference book for composites technology. CRC Press, 1999.
[57] M. Li, Z. Zheng, Z. Zhang, N. Li, S. Liu, Z. Chi, J. Xu, Y. Zhang, “All Polyimide” Mixed Matrix Membranes for High Performance Gas Separation. Polymers, 13(8), 2021: 1329.
[58] S.-Y. Yang, M. Ji, Chapter 3 -Polyimide Matrices for Carbon Fiber Composites. Advanced Polyimide Materials. Elsevier, 2018: 93-136.
[59] W. Weibull, A Statistical Theory of the Strength of Materials. Generalstabens litografiska anstalts förlag, Stockholm, 1939: 1-45.
[60] K. Atig, A. Mokaddem, M. Meskine, B. Doumi, M. Belkheir, M. El Keurti, Using Genetic Algorithms to Study the Effect of Cellulose Fibers Ratio on the Fiber-Matrix Interface Damage of Biocomposite Materials. Current Materials Science, 12(1), 2019: 83-90.
[61] A. Mokaddem, M. Alami, A. Boutaous, A study by a genetic algorithm for optimizing the arrangement of the fibers on the damage to the fiber–matrix interface of a composite material. The Journal of the Textile Institute, 12, 2012: 1376-1382.
[62] B. Benyamina, A. Mokaddem, B. Doumi, M. Belkheir, M. Elkeurti, Study and Modeling of Thermomechanical Properties of Jute and Alfa Fiber-Reinforced Polymer Matrix Hybrid Biocomposite Materials. Polymer Bulletin, 78, 2020: 1771-1795.
[63] A. Mokaddem, M. Alami, B. Doumi, A. Boutaous, Prediction by a Genetic Algorithm of the fiber Matrix Interface Damage for Composite Material. Part 1: Study Of Shear Damage To Two Composites T300/914 and Peek/APC2. Strength of Materials, 46, 2014: 543-547.
[64] A. Mokaddem, M. Alami, N. Ziani, N. Beldjoudi, A. Boutaous, Prediction by a Genetic Algorithm of the Fiber–Matrix Interface Damage for Composite Material. Part 2. Study of Shear Damage in Graphite/Epoxy Nanocomposites. Strength of Materials, 46, 2014: 548-552.
[65] F.A. Belhadj, M. Belkheir, A. Mokaddem, B. Doumi, A. Boutaous, Numerical Characterization of the Humidity Effect on the Fiber-Matrix Interface Damage of Hybrid Composite Material Based on Vinyl Ester Polymer Matrix For Engineering Applications. Emergent Materials, 5, 2022: 591-600.
[66] A.K. Kaw, Mechanics of composite materials, Second edition. CRC Press and Taylor & Francis Group, 2005.
[67] K. Lamhour, M. Rouway, O. Mrajji, A. Tizliouine, L.E.H. Omari, H. Salhi, N. Chakhchaoui, O. Cherkaoui, M. El Wazna, Extraction and Characterization of Alfa Fibers and Their Use to Produce Alfa/Wool Woven Fabrics for Composite Reinforcement. International Polymer Processing, 37(2), 2022: 210-225.
[68] H.L. Cox, The Elasticity and Strength of Paper and Other Fibrous Materials. British Journal of Applied Physics, 12, 1952: 72-79.
[69] D.C. Nguyen, Characterization of the Fiber/Matrix Interface: Application to Polypropylene/Hemp Composites, Ph.D. Thesis. Troyes University, Troyes, France, 2016.

© 2024 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 1
March 2024

Last Edition

Volume 9
Number 1
March 2024

How to Cite

M. Alami, A. Mokaddem, M. Belkheir, M. Rouissat, B. Doumi, D. Ziani, Improving the Performance of Hybrid Biocomposite Materials Using Epoxy, Vinyl Ester and Polyimide Polymer Matrix: Comparative Study. Applied Engineering Letters, 9(2), 2024: 64-75.

More Citation Formats

Alami, M., Mokaddem, A., Belkheir, M., Rouissat, M., Doumi, B., & Ziani, D. (2024). Improving the Performance of Hybrid Biocomposite Materials Using Epoxy, Vinyl Ester and Polyimide Polymer Matrix: Comparative Study. Applied Engineering Letters, 9(2), 64-75.

Alami, Mohamed, et al. “Improving the Performance of Hybrid Biocomposite Materials Using Epoxy, Vinyl Ester and Polyimide Polymer Matrix: Comparative Study.“ Applied Engineering Letters, vol. 9, no. 2, 2024: 64-75.

Alami, Mohamed, Allel Mokaddem, Mohammed Belkheir, Mehdi Rouissat, Bendouma Doumi, and Djamila Ziani. 2024. “Improving the Performance of Hybrid Biocomposite Materials Using Epoxy, Vinyl Ester and Polyimide Polymer Matrix: Comparative Study.“ Applied Engineering Letters, 9 (2): 64-75.

Alami, M., Mokaddem, A., Belkheir, M., Rouissat, M., Doumi, B. and Ziani, D. (2024). Improving the Performance of Hybrid Biocomposite Materials Using Epoxy, Vinyl Ester and Polyimide Polymer Matrix: Comparative Study. Applied Engineering Letters, 9(2), pp. 64-75.
doi: 10.46793/aeletters.2024.9.2.1.