ISSN 2466-4677; e-ISSN 2466-4847
SCImago Journal Rank
2023: SJR=0.19
CWTS Journal Indicators
2023: SNIP=0.57
Thermal conductivity modeling of dielectric oils-based nanofluids using the finite element method
Authors:
,
Boubakeur Zegnini1
,
Belkacem Yousfi2
,
Received: 26 December 2023
Revised: 20 February 2024
Accepted: 6 March 2024
Published: 31 March 2024
Abstract:
Keywords:
Dielectric oils, Finite element method, Modeling, Nanofluids, Nanoparticles, Thermal conductivity, Transformer, Temperature, Volume concentration
References:
[1] M. Rafiq, M. Shafique, A. Azam, M. Ateeq, I.A. Khan, A. Hussain, Sustainable, Renewable and Environmental-Friendly Insulation Systems for High Voltages Applications. Molecules, 25(17), 2020: 3901.
https://doi.org/10.3390/molecules25173901
[2] M. Rafiq, M. Shafique, A. Azam, M. Ateeq, The impacts of nanotechnology on the improvement of liquid insulation of transformers: Emerging trends and challenges. Journal of Molecular Liquids, 302, 2020: 112482. https://doi.org/10.1016/j.molliq.2020.112482
[3] N.S. Suhaimi, M.F.M. Din, M.T. Ishak, A.R.A. Rahman, J. Wang, M.Z. Hassan, Performance and limitation of mineral oil-based carbon nanotubes nanofluid in transformer application. Alexandria Engineering Journal, 61(12), 2022: 9623-9635. https://doi.org/10.1016/j.aej.2022.02.071
[4] D. Amin, R. Walvekar, M. Khalid, M. Vaka, N. M. Mubarak, T.C.S.M. Gupta, Recent Progress and Challenges in Transformer Oil Nanofluid Development: A Review on Thermal and Electrical Properties. IEEE Access, 7, 2019: 151422-151438. https://doi.org/10.1109/ACCESS.2019.2946633
[5] K.S. Kassi, M.I. Farinas, I. Fofana, C. Volat, Analysis of Aged Oil on the Cooling of Power Transformers from Computational Fluid Dynamics and Experimental Measurements. Journal of Applied Fluid Mechanics, 9(Special Issue 2), 2016: 235-243. https://doi.org/10.36884/jafm.9.SI2.25830
[6] H. Jin, Dielectric Strength and Thermal Conductivity of Mineral Oil based Nanofluids (Ph.D. Thesis). Delft University of Technology, Delft, Netherlands, 2015.
[7] M. Rafiq, M. Shafique, A. Azam, M. Ateeq, Transformer oil-based nanofluid: The application of nanomaterials on thermal, electrical and physicochemical properties of liquid insulation-A review. Ain Shams Engineering Journal, 12(1), 2021: 555-576. https://doi.org/10.1016/j.asej.2020.08.010
[8] D.A. Barkas, I. Chronis, C. Psomopoulos, Failure mapping and critical measurements for the operating condition assessment of power transformers. Energy Reports, 8, 2022: 527-547.
https://doi.org/10.1016/j.egyr.2022.07.028
[9] J.L. Jiosseu, A. Jean‑Bernard, G.M. Mengounou, E.T. Nkouetcha, A.M. Imano, Statistical analysis of the impact of FeO3 and ZnO nanoparticles on the physicochemical and dielectric performance of monoester‑based nanofluids. Scientific Reports, 13, 2023: 12328. https://doi.org/10.1038/s41598-023-39512-9
[10] K.N. Koutras, G.D. Peppas, S.N. Tegopoulos, A. Kyritsis, A.G. Yiotis, T.E. Tsovilis, I.F. Gonos, E.C. Pyrgioti, Ageing Impact on Relative Permittivity, Thermal Properties and Lightning Impulse Voltage Performance of Natural Ester Oil Filled with Semi-conducting Nanoparticles. IEEE Transactions On Dielectrics And Electrical Insulation, 30(4), 2023: 1598-1607. https://doi.org/10.1109/TDEI.2023.3285524
[11] N.A. Azizie, N. Hussin, Preparation of vegetable oil-based nanofluid and studies on its insulating property: A review. Journal of Physics: Conference Series, 1432(1), 2020: 012025.
https://doi.org/10.1088/1742-6596/1432/1/012025
[12] A.Y. Boukounacha, B. Zegnini, B. Yousfi, Effect of Temperature and Volume Concentration on the Thermal Conductivity of Mineral Oil-based Nanodielectrics, 3rd International Conference on Engineering and Applied Natural Sciences 2023 (ICEANS 2023), 14 January 2023, Konya, Turkey, pp.281-284
[13] S. Ab Ghani, N.A. Muhamad, Z.A. Noorden, H. Zainuddin, N. Abu Bakar, M.A. Talib, Methods for improving the workability of natural ester insulating oils in power transformer applications: A review. Electric Power Systems Research, 163, 2018: 655-667. https://doi.org/10.1016/j.epsr.2017.10.008
[14] M. Bhatt, P. Bhatt, Finite Element Based Comparative Analysis of Positive Streamers in Multi Dispersed Nanoparticle Based Transformer Oil. International Journal of Engineering & Technology Innovation, 12(1), 2021: 29-44. https://doi.org/10.46604/ijeti.2021.7681
[15] H. Lin, Q. Jian, X. Bai, D. Li, Z. Huang, W. Huang, S. Feng, Z. Cheng, Recent advances in thermal conductivity and thermal applications of graphene and its derivatives nanofluids. Applied Thermal Engineering, 218, 2023: 119176. https://doi.org/10.1016/j.applthermaleng.2022.119176
[16] T. Ambreen. M.-H. Kim, Influence of particle size on the effective thermal conductivity of nanofluids: A critical review. Applied Energy, 264, 2020: 114684. https://doi.org/10.1016/j.apenergy.2020.114684
[17] M.M. Ghislain, A. Jean-Bernard, M.I. Adolphe, Effect of FeO3 nanoparticles on the thermodynamic and physico-chemical properties of nanofluid based on kernel palm oil methyl ester (KPOME). Fuel Communications, 12, 2022: 100076. https://doi.org/10.1016/j.jfueco.2022.100076
[18] M.M. Bhunia, K.K. Chattopadhyay, P. Chattopadhyay, Transformer oil nanofluids by two-dimensional hexagonal boron nitride nanofillers. Electrical Engineering, 105, 2023:813-825.
https://doi.org/10.1007/s00202-022-01699-x
[19] R.A. Farade, N.I.B.A. Wahab, D.E.A. Mansour, N.B. Azis, J. Jasni, N.R. Banapurmath, M.E.M. Soudagar, Investigation of the Dielectric and Thermal Properties of Non-Edible Cottonseed Oil by Infusing h-BN Nanoparticles. IEEE Access, 8, 2020: 76204-76217. https://doi.org/10.1109/ACCESS.2020.2989356
[20] H.Ş. Aybar, M. Sharifpur, M.R. Azizian, M. Mehrabi, J.P. Meyer, A Review of Thermal Conductivity Models for Nanofluids. Heat Transfer Engineering, 36(13), 2015:1085-1110.
https://doi.org/10.1080/01457632.2015.987586
[21] H. Yasmin, S.O. Giwa, S. Noor, M. Sharifpur, Thermal Conductivity Enhancement of Metal Oxide Nanofluids: A Critical Review. Nanomaterials, 13(3), 2023: 597. https://doi.org/10.3390/nano13030597
[22] N. Ali, J.A. Teixeira, A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties. Journal of Nanomaterials, 2018, 2018: 6978130. https://doi.org/10.1155/2018/6978130
[23] P.K. Das, A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. Journal of Molecular Liquids, 240, 2017: 420-446.
https://doi.org/10.1016/j.molliq.2017.05.071
[24] S.R. Babu, P.R. Babu, D.V. Rambabu, Effects of Some Parameters on Thermal Conductivity of Nanofluids and Mechanisms of Heat Transfer Improvement. International Journal of Engineering Research and Applications, 3(4), 2013: 2136-2140.
[25] A.Y. Boukounacha, B. Zegnini, B. Yousfi, T. Seghier, Thermal Conductivity in a Nanofluid Filled Transformer: Modeling by the Finite Element Method. 2nd International Conference on Electronics, Energy and Measurement 2023 (IC2EM 2023), 28 November 2023, Medea, Algeria.
[26] H.S. Karaman, A.Z. El Dein, D.-E.A. Mansour, M. Lehtonen, M.M.F. Darwish, Influence of Mineral Oil-Based Nanofluids on the Temperature Distribution and Generated Heat Energy Inside Minimum Oil Circuit Breaker in Making Process. Nanomaterials, 13(13), 2023:1951. https://doi.org/10.3390/nano13131951
[27] A.H. Pordanjani, S. Aghakhani, M. Afrand, M. Sharifpur, J.P. Meyer, H. Xu, H.M. Ali, N. Karimi, G. Cheraghian, Nanofluids: Physical phenomena, applications in thermal systems and the environment effects- a critical review. Journal of Cleaner Production, 320, 2021: 128573.
https://doi.org/10.1016/j.jclepro.2021.128573
[28] Z. Lafdaili, S. El-Hamdani, A. Bendou, K. Limam, B. El-Hafad, Numerical study of the turbulent natural convection of nanofluids in a partially heated cubic cavity. Thermal Science, 25(4A), 2021: 2741-2754. https://doi.org/10.2298/TSCI200513057
[29] M. Liu, L. Cheng, S. Hu, Y. Jiang, J. Zhang, H. Xu, Study on the Temperature Rise Characteristic of Vegetable Insulated Oil Transformer under Different Loads Conditions. 2020 Asia Energy and Electrical Engineering Symposium (AEEES), 29 May 2020, Chengdu, China, pp.79-84.
https://doi.org/10.1109/AEEES48850.2020.9121563
[30] G. Liu, Z. Zheng, D. Yuan, L. Li, W. Wu, Simulation of Fluid-Thermal Field in Oil-Immersed Transformer Winding Based on Dimensionless Least-Squares and Upwind Finite Element Method. Energies, 11(9), 2018: 2357. https://doi.org/10.3390/en11092357
[31] M. Bukvić, S. Gajević, A. Skulić, S. Savić, A. Ašonja, B. Stojanović, Tribological Application of Nanocomposite Additives in Industrial Oils. Lubricants, 12(1), 2024: 6.
https://doi.org/10.3390/lubricants12010006
© 2024 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
A.Y. Boukounacha, B. Zegnini, B. Yousfi, T. Seghier, Thermal Conductivity Modeling of Dielectric Oils-Based Nanofluids Using the Finite Element Method. Applied Engineering Letters, 9(1), 2024: 1-11.
https://doi.org/10.46793/aeletters.2024.9.1.1
More Citation Formats
Boukounacha, A.Y., Zegnini, B., Yousfi, B., & Seghier, T. (2024). Thermal Conductivity Modeling of Dielectric Oils-Based Nanofluids Using the Finite Element Method. Applied Engineering Letters, 9(1), 1-11.
https://doi.org/10.46793/aeletters.2024.9.1.1
Boukounacha, Ahmed Yassine, et al. “Thermal Conductivity Modeling of Dielectric Oils-Based Nanofluids Using the Finite Element Method.“ Applied Engineering Letters, vol. 9, no. 1, 2024, pp. 1-11.
https://doi.org/10.46793/aeletters.2024.9.1.1
Boukounacha, Ahmed Yassine, Boubakeur Zegnini, Belkacem Yousfi, Tahar Seghier. 2024. “Thermal Conductivity Modeling of Dielectric Oils-Based Nanofluids Using the Finite Element Method.“ Applied Engineering Letters, 9 (1): 1-11.
https://doi.org/10.46793/aeletters.2024.9.1.1
Boukounacha, A.Y., Zegnini, B., Yousfi, B. and Seghier, T. (2024). Thermal Conductivity Modeling of Dielectric Oils-Based Nanofluids Using the Finite Element Method. Applied Engineering Letters, 9(1), pp. 1-11. doi: 10.46793/aeletters.2024.9.1.1.
SCImago Journal Rank
2023: SJR=0.19
CWTS Journal Indicators
2023: SNIP=0.57
Thermal conductivity modeling of dielectric oils-based nanofluids using the finite element method
Authors:
,
Boubakeur Zegnini1
,
Belkacem Yousfi2
,
Received: 26 December 2023
Revised: 20 February 2024
Accepted: 6 March 2024
Published: 31 March 2024
Abstract:
Keywords:
Dielectric oils, Finite element method, Modeling, Nanofluids, Nanoparticles, Thermal conductivity, Transformer, Temperature, Volume concentration
References:
[1] M. Rafiq, M. Shafique, A. Azam, M. Ateeq, I.A. Khan, A. Hussain, Sustainable, Renewable and Environmental-Friendly Insulation Systems for High Voltages Applications. Molecules, 25(17), 2020: 3901.
https://doi.org/10.3390/molecules25173901
[2] M. Rafiq, M. Shafique, A. Azam, M. Ateeq, The impacts of nanotechnology on the improvement of liquid insulation of transformers: Emerging trends and challenges. Journal of Molecular Liquids, 302, 2020: 112482. https://doi.org/10.1016/j.molliq.2020.112482
[3] N.S. Suhaimi, M.F.M. Din, M.T. Ishak, A.R.A. Rahman, J. Wang, M.Z. Hassan, Performance and limitation of mineral oil-based carbon nanotubes nanofluid in transformer application. Alexandria Engineering Journal, 61(12), 2022: 9623-9635. https://doi.org/10.1016/j.aej.2022.02.071
[4] D. Amin, R. Walvekar, M. Khalid, M. Vaka, N. M. Mubarak, T.C.S.M. Gupta, Recent Progress and Challenges in Transformer Oil Nanofluid Development: A Review on Thermal and Electrical Properties. IEEE Access, 7, 2019: 151422-151438. https://doi.org/10.1109/ACCESS.2019.2946633
[5] K.S. Kassi, M.I. Farinas, I. Fofana, C. Volat, Analysis of Aged Oil on the Cooling of Power Transformers from Computational Fluid Dynamics and Experimental Measurements. Journal of Applied Fluid Mechanics, 9(Special Issue 2), 2016: 235-243. https://doi.org/10.36884/jafm.9.SI2.25830
[6] H. Jin, Dielectric Strength and Thermal Conductivity of Mineral Oil based Nanofluids (Ph.D. Thesis). Delft University of Technology, Delft, Netherlands, 2015.
[7] M. Rafiq, M. Shafique, A. Azam, M. Ateeq, Transformer oil-based nanofluid: The application of nanomaterials on thermal, electrical and physicochemical properties of liquid insulation-A review. Ain Shams Engineering Journal, 12(1), 2021: 555-576. https://doi.org/10.1016/j.asej.2020.08.010
[8] D.A. Barkas, I. Chronis, C. Psomopoulos, Failure mapping and critical measurements for the operating condition assessment of power transformers. Energy Reports, 8, 2022: 527-547.
https://doi.org/10.1016/j.egyr.2022.07.028
[9] J.L. Jiosseu, A. Jean‑Bernard, G.M. Mengounou, E.T. Nkouetcha, A.M. Imano, Statistical analysis of the impact of FeO3 and ZnO nanoparticles on the physicochemical and dielectric performance of monoester‑based nanofluids. Scientific Reports, 13, 2023: 12328. https://doi.org/10.1038/s41598-023-39512-9
[10] K.N. Koutras, G.D. Peppas, S.N. Tegopoulos, A. Kyritsis, A.G. Yiotis, T.E. Tsovilis, I.F. Gonos, E.C. Pyrgioti, Ageing Impact on Relative Permittivity, Thermal Properties and Lightning Impulse Voltage Performance of Natural Ester Oil Filled with Semi-conducting Nanoparticles. IEEE Transactions On Dielectrics And Electrical Insulation, 30(4), 2023: 1598-1607. https://doi.org/10.1109/TDEI.2023.3285524
[11] N.A. Azizie, N. Hussin, Preparation of vegetable oil-based nanofluid and studies on its insulating property: A review. Journal of Physics: Conference Series, 1432(1), 2020: 012025.
https://doi.org/10.1088/1742-6596/1432/1/012025
[12] A.Y. Boukounacha, B. Zegnini, B. Yousfi, Effect of Temperature and Volume Concentration on the Thermal Conductivity of Mineral Oil-based Nanodielectrics, 3rd International Conference on Engineering and Applied Natural Sciences 2023 (ICEANS 2023), 14 January 2023, Konya, Turkey, pp.281-284
[13] S. Ab Ghani, N.A. Muhamad, Z.A. Noorden, H. Zainuddin, N. Abu Bakar, M.A. Talib, Methods for improving the workability of natural ester insulating oils in power transformer applications: A review. Electric Power Systems Research, 163, 2018: 655-667. https://doi.org/10.1016/j.epsr.2017.10.008
[14] M. Bhatt, P. Bhatt, Finite Element Based Comparative Analysis of Positive Streamers in Multi Dispersed Nanoparticle Based Transformer Oil. International Journal of Engineering & Technology Innovation, 12(1), 2021: 29-44. https://doi.org/10.46604/ijeti.2021.7681
[15] H. Lin, Q. Jian, X. Bai, D. Li, Z. Huang, W. Huang, S. Feng, Z. Cheng, Recent advances in thermal conductivity and thermal applications of graphene and its derivatives nanofluids. Applied Thermal Engineering, 218, 2023: 119176. https://doi.org/10.1016/j.applthermaleng.2022.119176
[16] T. Ambreen. M.-H. Kim, Influence of particle size on the effective thermal conductivity of nanofluids: A critical review. Applied Energy, 264, 2020: 114684. https://doi.org/10.1016/j.apenergy.2020.114684
[17] M.M. Ghislain, A. Jean-Bernard, M.I. Adolphe, Effect of FeO3 nanoparticles on the thermodynamic and physico-chemical properties of nanofluid based on kernel palm oil methyl ester (KPOME). Fuel Communications, 12, 2022: 100076. https://doi.org/10.1016/j.jfueco.2022.100076
[18] M.M. Bhunia, K.K. Chattopadhyay, P. Chattopadhyay, Transformer oil nanofluids by two-dimensional hexagonal boron nitride nanofillers. Electrical Engineering, 105, 2023:813-825.
https://doi.org/10.1007/s00202-022-01699-x
[19] R.A. Farade, N.I.B.A. Wahab, D.E.A. Mansour, N.B. Azis, J. Jasni, N.R. Banapurmath, M.E.M. Soudagar, Investigation of the Dielectric and Thermal Properties of Non-Edible Cottonseed Oil by Infusing h-BN Nanoparticles. IEEE Access, 8, 2020: 76204-76217. https://doi.org/10.1109/ACCESS.2020.2989356
[20] H.Ş. Aybar, M. Sharifpur, M.R. Azizian, M. Mehrabi, J.P. Meyer, A Review of Thermal Conductivity Models for Nanofluids. Heat Transfer Engineering, 36(13), 2015:1085-1110.
https://doi.org/10.1080/01457632.2015.987586
[21] H. Yasmin, S.O. Giwa, S. Noor, M. Sharifpur, Thermal Conductivity Enhancement of Metal Oxide Nanofluids: A Critical Review. Nanomaterials, 13(3), 2023: 597. https://doi.org/10.3390/nano13030597
[22] N. Ali, J.A. Teixeira, A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties. Journal of Nanomaterials, 2018, 2018: 6978130. https://doi.org/10.1155/2018/6978130
[23] P.K. Das, A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. Journal of Molecular Liquids, 240, 2017: 420-446.
https://doi.org/10.1016/j.molliq.2017.05.071
[24] S.R. Babu, P.R. Babu, D.V. Rambabu, Effects of Some Parameters on Thermal Conductivity of Nanofluids and Mechanisms of Heat Transfer Improvement. International Journal of Engineering Research and Applications, 3(4), 2013: 2136-2140.
[25] A.Y. Boukounacha, B. Zegnini, B. Yousfi, T. Seghier, Thermal Conductivity in a Nanofluid Filled Transformer: Modeling by the Finite Element Method. 2nd International Conference on Electronics, Energy and Measurement 2023 (IC2EM 2023), 28 November 2023, Medea, Algeria.
[26] H.S. Karaman, A.Z. El Dein, D.-E.A. Mansour, M. Lehtonen, M.M.F. Darwish, Influence of Mineral Oil-Based Nanofluids on the Temperature Distribution and Generated Heat Energy Inside Minimum Oil Circuit Breaker in Making Process. Nanomaterials, 13(13), 2023:1951. https://doi.org/10.3390/nano13131951
[27] A.H. Pordanjani, S. Aghakhani, M. Afrand, M. Sharifpur, J.P. Meyer, H. Xu, H.M. Ali, N. Karimi, G. Cheraghian, Nanofluids: Physical phenomena, applications in thermal systems and the environment effects- a critical review. Journal of Cleaner Production, 320, 2021: 128573.
https://doi.org/10.1016/j.jclepro.2021.128573
[28] Z. Lafdaili, S. El-Hamdani, A. Bendou, K. Limam, B. El-Hafad, Numerical study of the turbulent natural convection of nanofluids in a partially heated cubic cavity. Thermal Science, 25(4A), 2021: 2741-2754. https://doi.org/10.2298/TSCI200513057
[29] M. Liu, L. Cheng, S. Hu, Y. Jiang, J. Zhang, H. Xu, Study on the Temperature Rise Characteristic of Vegetable Insulated Oil Transformer under Different Loads Conditions. 2020 Asia Energy and Electrical Engineering Symposium (AEEES), 29 May 2020, Chengdu, China, pp.79-84.
https://doi.org/10.1109/AEEES48850.2020.9121563
[30] G. Liu, Z. Zheng, D. Yuan, L. Li, W. Wu, Simulation of Fluid-Thermal Field in Oil-Immersed Transformer Winding Based on Dimensionless Least-Squares and Upwind Finite Element Method. Energies, 11(9), 2018: 2357. https://doi.org/10.3390/en11092357
[31] M. Bukvić, S. Gajević, A. Skulić, S. Savić, A. Ašonja, B. Stojanović, Tribological Application of Nanocomposite Additives in Industrial Oils. Lubricants, 12(1), 2024: 6.
https://doi.org/10.3390/lubricants12010006
© 2024 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
A.Y. Boukounacha, B. Zegnini, B. Yousfi, T. Seghier, Thermal Conductivity Modeling of Dielectric Oils-Based Nanofluids Using the Finite Element Method. Applied Engineering Letters, 9(1), 2024: 1-11.
https://doi.org/10.46793/aeletters.2024.9.1.1
More Citation Formats
Boukounacha, A.Y., Zegnini, B., Yousfi, B., & Seghier, T. (2024). Thermal Conductivity Modeling of Dielectric Oils-Based Nanofluids Using the Finite Element Method. Applied Engineering Letters, 9(1), 1-11.
https://doi.org/10.46793/aeletters.2024.9.1.1
Boukounacha, Ahmed Yassine, et al. “Thermal Conductivity Modeling of Dielectric Oils-Based Nanofluids Using the Finite Element Method.“ Applied Engineering Letters, vol. 9, no. 1, 2024, pp. 1-11.
https://doi.org/10.46793/aeletters.2024.9.1.1
Boukounacha, Ahmed Yassine, Boubakeur Zegnini, Belkacem Yousfi, Tahar Seghier. 2024. “Thermal Conductivity Modeling of Dielectric Oils-Based Nanofluids Using the Finite Element Method.“ Applied Engineering Letters, 9 (1): 1-11.
https://doi.org/10.46793/aeletters.2024.9.1.1
Boukounacha, A.Y., Zegnini, B., Yousfi, B. and Seghier, T. (2024). Thermal Conductivity Modeling of Dielectric Oils-Based Nanofluids Using the Finite Element Method. Applied Engineering Letters, 9(1), pp. 1-11. doi: 10.46793/aeletters.2024.9.1.1.