Journal Menu
Archive
Last Edition

PORTABLE DRILLING MACHINE APPLIED AS A FRICTION STIR TOOL TO JOIN LIGHT METALS

Authors:

Ahmad K. Jassim1

, Raheem Al-Subar2

, Dhia Ch. Ali3

1Research & Development Department, The State Company for Iron and Steel, Basrah, Iraq
2Mechanical Department, Engineering College, University of Basrah, Basrah, Iraq
3Materials Department, Engineering College, University of Basrah, Basrah, Iraq

Received: 03.10.2022.
Accepted: 21.12.2022.
Available: 31.12.2022.

Abstract:

Sustainable manufacturing technology is one of the requirements of the current industrial fields to reduce the weight and energy used. Friction stir welding (FSW) can be considered a quantum leap in the development of welding technology. A solid-state process utilizes a non-consumable tool and less electrical energy. Friction stir spot welding (FSSW) is a particular case of FSW that began to spread rapidly, especially for similar and dissimilar metals, which has extended to weld the polymers. The increase of FSSW use in different fields needs to simplify the equipment. This study used a portable drilling machine to construct an FSSW apparatus with a rotational speed between 1500 and 3000 rpm with a pin diameter of 2, 3 and 4 mm. The results indicated that the joints welded by the developed apparatus have good strength and hardness. Furthermore, many specimens succeeded in the bending test, especially when the rotational speed was set at 2250 rpm and the pin diameter was 3 mm. In addition, it was found that the mechanical properties increased with the rotational speed and pin diameter, then gradually decreased. Finally, the Response Surface Methodology (RSM), besides the analysis of variation (ANOVA), was utilized to maximize the lap-shear fracture load. The results indicated that the maximum lap-shear fracture load can be achieved at a tool speed N of {2300>N>1600} rpm with a pin diameter (d) of {2.75>N>3.75 mm}.

Keywords:

FSSW, friction stir spot welding, drilling machine, FSW, response surface methodology, light metals

References:

[1] M.K. Kulekci, U. Esme, O. Er, Experimental comparison of resistance spot welding and friction-stir spot welding processes for the en aw 5005 aluminum alloy. Materiali in Tehnologije, 45(5), 2011: 395-399.
[2] P. Briskham, N. Blundell, L. Han, R. Hewitt, K. Young, D. Boomer, Comparison of self-pierce riveting, resistance spot welding and spot friction Joining for aluminium automotive sheet. SAE International, 2006: 2006-01-0774. https://doi.org/10.4271/2006-01-0774
[3] R.K. Al-Sabur, A.K. Jassim, friction stir spot welding applied to weld dissimilar metals of aa1100 al-alloy and C11000 copper. IOP Conference Series: Materials Science and Engineering, 455(1), 2018: 012087. https://doi.org/10.1088/1757-899X/455/1/012087
[4] T.Y. Pan, Friction stir spot welding (FSSW) – A literature review. SAE International, 2007: 2007-01-1702. https://doi.org/10.4271/2007-01-1702
[5] Z. Feng, M.L. Santella, S.A. David, M. Kuo, R.S. Bhatnagar, R.J. Steel, S.M. Packer, T. Pan, friction stir spot welding of advanced high-strength steels – a feasibility study. SAE International, 2005: 2005-01- 1248. https://doi.org/10.4271/2005-01-1248
[6] Y. Tozaki, Y. Uematsu, K. Tokaji, A newly developed tool without probe for friction stir spot welding and its performance. Journal of Materials Processing Technology, 210(6-7), 2010: 844-851. https://doi.org/10.1016/j.jmatprotec.2010.01.015
[7] X.W. Yang, T. Fu, W.Y. Li, Friction stir spot welding: A review on joint macro – and microstructure, property, and process modelling. Advances in Materials Science and Engineering, 2014, 2014: 697170. https://doi.org/10.1155/2014/697170
[8] R.S. Mishra, P.S. De, N. Kumar, Friction stir welding and processing: Science and engineering. Springer Cham, 2014. https://doi.org/10.1007/978-3-319-07043-8
[9] H. Badarinarayan, Q. Yang, S. Zhu, Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy, International Journal of Machine Tools and Manufacture, 49(2), 2009: 142-148. https://doi.org/10.1016/j.ijmachtools.2008.09.004
[10] V.X. Tran, J. Pan, T. Pan, Effects of processing time on strengths and failure modes of dissimilar spot friction welds between aluminum 5754-O and 7075-T6 sheets. Journal of Materials Processing Technology, 209(8), 2009: 3724-3739. https://doi.org/10.1016/j.jmatprotec.2008.08.028
[11] R. Al-Sabur, A.K. Jassim, E. Messele, Real-time monitoring applied to optimize friction stir spot welding joint for AA1230 Al-alloys. Materials Today: Proceedings, 42(5), 2021: 2018-2024. https://doi.org/10.1016/j.matpr.2020.12.253
[12] M. Merzoug, M. Mazari, L. Berrahal, A. Imad, Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys. Materials & Design, 31(6), 2010: 3023-3028. https://doi.org/10.1016/j.matdes.2009.12.029
[13] Z. Shen, X. Yang, Z. Zhang, L. Cui, Y. Yin, Mechanical properties and failure mechanisms of friction stir spot welds of AA 6061-T4 sheets. Materials & Design, 49, 2013: 181-191. https://doi.org/10.1016/j.matdes.2013.01.066
[14] Y. S. Sato, M. Fujimoto, N. Abe, H. Kokawa, Friction stir spot welding phenomena in Al alloy 6061. Materials Science Forum, 638-642, 2010: 1243-1248. https://doi.org/10.4028/www.scientific.net/MSF.638-642.1243
[15] Y.F. Sun, H. Fujii, N. Takaki, Y. Okitsu, Microstructure and mechanical properties of mild steel joints prepared by a flat friction stir spot welding technique. Materials & Design, 37, 2012: 384-392. https://doi.org/10.1016/j.matdes.2012.01.027
[16] Y.C. Chiou, C. te Liu, R. T. Lee, A pinless embedded tool used in FSSW and FSW of aluminum alloy. Journal of Materials Processing Technology, 23(11), 2013: 1818-1824. https://doi.org/10.1016/j.jmatprotec.2013.04.018
[17] C. Schmal, G. Meschut, Refill friction stir spot and resistance spot welding of aluminium joints with large total sheet thicknesses (III-1965-19). Welding in the World, 64(9), 2020: 1471-1480. https://doi.org/10.1007/s40194-020-00922-2
[18] X. Lyu, M. Li, X. Li, J. Chen, Double-sided friction stir spot welding of steel and aluminum alloy sheets. The International Journal of Advanced Manufacturing Technology, 96(5-8), 2018: 2875-2884. https://doi.org/10.1007/s00170-018-1710-x
[19] S. Gopi K. Manonmani, Predicting tensile strength of double side friction stir welded 6082-T6 aluminium alloy. Science and Technology of Welding and Joining, 17(7), 2013: 601-607. https://doi.org/10.1179/1362171812y.0000000055
[20] A.K. Pandey, S.S. Mahapatra, Investigation of weld zone obtained by friction stir spot welding (FSSW) of aluminium-6061 alloy. Materials Today: Proceedings, 18(7), 2019: 4491-4500. https://doi.org/10.1016/j.matpr.2019.07.419
[21] S.R. Yazdi, B. Beidokhti, M. Haddad-Sabzevar, Pinless tool for FSSW of AA 6061-T6 aluminum alloy. Journal of Materials Processing Technology, 267 2019: 44-51. https://doi.org/10.1016/j.jmatprotec.2018.12.005
[22] S. Alaeibehmand, S.E. Mirsalehi, E. Ranjbarnodeh, Pinless FSSW of DP600/Zn/AA6061 dissimilar joints. Journal of Materials Research and Technology, 15, 2021: 996-1006. https://doi.org/10.1016/j.jmrt.2021.08.071
[23] R. Al-Sabur, Tensile strength prediction of aluminium alloys welded by FSW using response surface methodology – Comparative review. Materials Today: Proceedings, vol. 45(6), 2021: 4504-4510.
https://doi.org/10.1016/j.matpr.2020.12.1001
[24] K.Mahalik, J.N. Sahu, A. v. Patwardhan, B.C. Meikap, Statistical modelling and optimization of hydrolysis of urea to generate ammonia for flue gas conditioning. Journal of Hazardous Materials, 182(1-3), 2010: 603-610.
https://doi.org/10.1016/j.jhazmat.2010.06.075
[25] S.K. Behera, H. Meena, S. Chakraborty, B. C. Meikap, Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology, 28(4), 2018: 621-629. https://doi.org/10.1016/j.ijmst.2018.04.014
[26] R. Al-Sabur, H.I. Khalaf, A. Świerczyńska, G. Rogalski, H.A. Derazkola, Effects of noncontact shoulder tool velocities on friction stir joining of polyamide 6 (PA6). Materials, 15(12), 2022: 4214. https://doi.org/10.3390/ma15124214
[27] H.I. Khalaf, R. Al-sabur, M.E. Abdullah, A. Kubit, H.A. Derazkola, Effects of underwater friction stir welding heat generation on residual stress of AA6068-T6 aluminum alloy. Materials, 15(6), 2022: 2223.
https://doi.org/10.3390/ma15062223
[28] P. Vivek, D.B. Jeroen, H. Henrik, I. Mattias, A. Saeed, A. Joel, S. Jörgen, High-speed friction stir welding in light weight battery trays for the EV industry. Science and Technology of Welding and Joining, 27(4), 2022: 250-255. https://doi.org/10.1080/13621718.2022.2045121
[29] P. Xue, G.M. Xie, B.L. Xiao, Z.Y. Ma, L. Geng, Effect of heat input conditions on microstructure and mechanical properties of friction-stir-welded pure copper. Metallurgical and Materials Transactions A, 41(8), 2010: 2010-2021. https://doi.org/10.1007/s11661-010-0254-y
[30] M. Jabbari, C.C. Tutum, Optimum rotation speed for the friction stir welding of pure copper. ISRN Materials Science, 2013, 2013: 978031. https://doi.org/10.1155/2013/978031
[31] M.A. Tashkandi, J.A. Al-jarrah, M. Ibrahim, Spot welding of 6061 aluminum alloy by friction stir spot welding process. Engineering, Technology & Applied Science Research, 7(3), 2017, 1629-1632. https://doi.org/10.48084/etasr.1125
[32] Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International, E92-16, 2017: 1-27.
[33] A. Mohamad Hanapiah, S. Islam, N. Khandoker, M. Abdul Md, Shear and hardness properties study of aa-6061 aluminium alloy lap-joints produced by friction stir spot welding process using H13 tool steel. International Journal of Engineering Materials and Manufacture, 6(3), 2021: 187-194. https://doi.org/10.26776/ijemm.06.03.2021.10
[34] G. Lakshmi Balasubramaniam, E, Boldsaikhan, G.F. Joseph Rosario, S.P. Ravichandran, S. Fukada, M. Fujimoto, K. Kamimuki, Mechanical properties and failure mechanisms of refill friction stir spot welds. Journal of Manufacturing and Materials Processing, 5(4), 2021: 118. https://doi.org/10.3390/jmmp5040118

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 7
Number 4
December 2022

Last Edition

Volume 7
Number 3
December 2022

Archive

PORTABLE DRILLING MACHINE APPLIED AS A FRICTION STIR TOOL TO JOIN LIGHT METALS

Authors:

Ahmad K. Jassim1
, Raheem Al-Subar2*
, Dhia Ch. Ali3

1Research & Development Department, The State Company for Iron and Steel, Basrah, Iraq
2Mechanical Department, Engineering College, University of Basrah, Basrah, Iraq
3Materials Department, Engineering College, University of Basrah, Basrah, Iraq

Received: 03.10.2022.
Accepted: 21.12.2022.
Available: 31.12.2022.

Abstract:

Sustainable manufacturing technology is one of the requirements of the current industrial fields to reduce the weight and energy used. Friction stir welding (FSW) can be considered a quantum leap in the development of welding technology. A solid-state process utilizes a non-consumable tool and less electrical energy. Friction stir spot welding (FSSW) is a particular case of FSW that began to spread rapidly, especially for similar and dissimilar metals, which has extended to weld the polymers. The increase of FSSW use in different fields needs to simplify the equipment. This study used a portable drilling machine to construct an FSSW apparatus with a rotational speed between 1500 and 3000 rpm with a pin diameter of 2, 3 and 4 mm. The results indicated that the joints welded by the developed apparatus have good strength and hardness. Furthermore, many specimens succeeded in the bending test, especially when the rotational speed was set at 2250 rpm and the pin diameter was 3 mm. In addition, it was found that the mechanical properties increased with the rotational speed and pin diameter, then gradually decreased. Finally, the Response Surface Methodology (RSM), besides the analysis of variation (ANOVA), was utilized to maximize the lap-shear fracture load. The results indicated that the maximum lap-shear fracture load can be achieved at a tool speed N of {2300>N>1600} rpm with a pin diameter (d) of {2.75>N>3.75 mm}.

Keywords:

FSSW, friction stir spot welding, drilling machine, FSW, response surface methodology, light metals

References:

[1] M.K. Kulekci, U. Esme, O. Er, Experimental comparison of resistance spot welding and friction-stir spot welding processes for the en aw 5005 aluminum alloy. Materiali in Tehnologije, 45(5), 2011: 395-399.
[2] P. Briskham, N. Blundell, L. Han, R. Hewitt, K. Young, D. Boomer, Comparison of self-pierce riveting, resistance spot welding and spot friction Joining for aluminium automotive sheet. SAE International, 2006: 2006-01-0774. https://doi.org/10.4271/2006-01-0774
[3] R.K. Al-Sabur, A.K. Jassim, friction stir spot welding applied to weld dissimilar metals of aa1100 al-alloy and C11000 copper. IOP Conference Series: Materials Science and Engineering, 455(1), 2018: 012087. https://doi.org/10.1088/1757-899X/455/1/012087
[4] T.Y. Pan, Friction stir spot welding (FSSW) – A literature review. SAE International, 2007: 2007-01-1702. https://doi.org/10.4271/2007-01-1702
[5] Z. Feng, M.L. Santella, S.A. David, M. Kuo, R.S. Bhatnagar, R.J. Steel, S.M. Packer, T. Pan, friction stir spot welding of advanced high-strength steels – a feasibility study. SAE International, 2005: 2005-01- 1248. https://doi.org/10.4271/2005-01-1248
[6] Y. Tozaki, Y. Uematsu, K. Tokaji, A newly developed tool without probe for friction stir spot welding and its performance. Journal of Materials Processing Technology, 210(6-7), 2010: 844-851. https://doi.org/10.1016/j.jmatprotec.2010.01.015
[7] X.W. Yang, T. Fu, W.Y. Li, Friction stir spot welding: A review on joint macro – and microstructure, property, and process modelling. Advances in Materials Science and Engineering, 2014, 2014: 697170. https://doi.org/10.1155/2014/697170
[8] R.S. Mishra, P.S. De, N. Kumar, Friction stir welding and processing: Science and engineering. Springer Cham, 2014. https://doi.org/10.1007/978-3-319-07043-8
[9] H. Badarinarayan, Q. Yang, S. Zhu, Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy, International Journal of Machine Tools and Manufacture, 49(2), 2009: 142-148. https://doi.org/10.1016/j.ijmachtools.2008.09.004
[10] V.X. Tran, J. Pan, T. Pan, Effects of processing time on strengths and failure modes of dissimilar spot friction welds between aluminum 5754-O and 7075-T6 sheets. Journal of Materials Processing Technology, 209(8), 2009: 3724-3739. https://doi.org/10.1016/j.jmatprotec.2008.08.028
[11] R. Al-Sabur, A.K. Jassim, E. Messele, Real-time monitoring applied to optimize friction stir spot welding joint for AA1230 Al-alloys. Materials Today: Proceedings, 42(5), 2021: 2018-2024. https://doi.org/10.1016/j.matpr.2020.12.253
[12] M. Merzoug, M. Mazari, L. Berrahal, A. Imad, Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys. Materials & Design, 31(6), 2010: 3023-3028. https://doi.org/10.1016/j.matdes.2009.12.029
[13] Z. Shen, X. Yang, Z. Zhang, L. Cui, Y. Yin, Mechanical properties and failure mechanisms of friction stir spot welds of AA 6061-T4 sheets. Materials & Design, 49, 2013: 181-191. https://doi.org/10.1016/j.matdes.2013.01.066
[14] Y. S. Sato, M. Fujimoto, N. Abe, H. Kokawa, Friction stir spot welding phenomena in Al alloy 6061. Materials Science Forum, 638-642, 2010: 1243-1248. https://doi.org/10.4028/www.scientific.net/MSF.638-642.1243
[15] Y.F. Sun, H. Fujii, N. Takaki, Y. Okitsu, Microstructure and mechanical properties of mild steel joints prepared by a flat friction stir spot welding technique. Materials & Design, 37, 2012: 384-392. https://doi.org/10.1016/j.matdes.2012.01.027
[16] Y.C. Chiou, C. te Liu, R. T. Lee, A pinless embedded tool used in FSSW and FSW of aluminum alloy. Journal of Materials Processing Technology, 23(11), 2013: 1818-1824. https://doi.org/10.1016/j.jmatprotec.2013.04.018
[17] C. Schmal, G. Meschut, Refill friction stir spot and resistance spot welding of aluminium joints with large total sheet thicknesses (III-1965-19). Welding in the World, 64(9), 2020: 1471-1480. https://doi.org/10.1007/s40194-020-00922-2
[18] X. Lyu, M. Li, X. Li, J. Chen, Double-sided friction stir spot welding of steel and aluminum alloy sheets. The International Journal of Advanced Manufacturing Technology, 96(5-8), 2018: 2875-2884. https://doi.org/10.1007/s00170-018-1710-x
[19] S. Gopi K. Manonmani, Predicting tensile strength of double side friction stir welded 6082-T6 aluminium alloy. Science and Technology of Welding and Joining, 17(7), 2013: 601-607. https://doi.org/10.1179/1362171812y.0000000055
[20] A.K. Pandey, S.S. Mahapatra, Investigation of weld zone obtained by friction stir spot welding (FSSW) of aluminium-6061 alloy. Materials Today: Proceedings, 18(7), 2019: 4491-4500. https://doi.org/10.1016/j.matpr.2019.07.419
[21] S.R. Yazdi, B. Beidokhti, M. Haddad-Sabzevar, Pinless tool for FSSW of AA 6061-T6 aluminum alloy. Journal of Materials Processing Technology, 267 2019: 44-51. https://doi.org/10.1016/j.jmatprotec.2018.12.005
[22] S. Alaeibehmand, S.E. Mirsalehi, E. Ranjbarnodeh, Pinless FSSW of DP600/Zn/AA6061 dissimilar joints. Journal of Materials Research and Technology, 15, 2021: 996-1006. https://doi.org/10.1016/j.jmrt.2021.08.071
[23] R. Al-Sabur, Tensile strength prediction of aluminium alloys welded by FSW using response surface methodology – Comparative review. Materials Today: Proceedings, vol. 45(6), 2021: 4504-4510.
https://doi.org/10.1016/j.matpr.2020.12.1001
[24] K.Mahalik, J.N. Sahu, A. v. Patwardhan, B.C. Meikap, Statistical modelling and optimization of hydrolysis of urea to generate ammonia for flue gas conditioning. Journal of Hazardous Materials, 182(1-3), 2010: 603-610.
https://doi.org/10.1016/j.jhazmat.2010.06.075
[25] S.K. Behera, H. Meena, S. Chakraborty, B. C. Meikap, Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology, 28(4), 2018: 621-629. https://doi.org/10.1016/j.ijmst.2018.04.014
[26] R. Al-Sabur, H.I. Khalaf, A. Świerczyńska, G. Rogalski, H.A. Derazkola, Effects of noncontact shoulder tool velocities on friction stir joining of polyamide 6 (PA6). Materials, 15(12), 2022: 4214. https://doi.org/10.3390/ma15124214
[27] H.I. Khalaf, R. Al-sabur, M.E. Abdullah, A. Kubit, H.A. Derazkola, Effects of underwater friction stir welding heat generation on residual stress of AA6068-T6 aluminum alloy. Materials, 15(6), 2022: 2223.
https://doi.org/10.3390/ma15062223
[28] P. Vivek, D.B. Jeroen, H. Henrik, I. Mattias, A. Saeed, A. Joel, S. Jörgen, High-speed friction stir welding in light weight battery trays for the EV industry. Science and Technology of Welding and Joining, 27(4), 2022: 250-255. https://doi.org/10.1080/13621718.2022.2045121
[29] P. Xue, G.M. Xie, B.L. Xiao, Z.Y. Ma, L. Geng, Effect of heat input conditions on microstructure and mechanical properties of friction-stir-welded pure copper. Metallurgical and Materials Transactions A, 41(8), 2010: 2010-2021. https://doi.org/10.1007/s11661-010-0254-y
[30] M. Jabbari, C.C. Tutum, Optimum rotation speed for the friction stir welding of pure copper. ISRN Materials Science, 2013, 2013: 978031. https://doi.org/10.1155/2013/978031
[31] M.A. Tashkandi, J.A. Al-jarrah, M. Ibrahim, Spot welding of 6061 aluminum alloy by friction stir spot welding process. Engineering, Technology & Applied Science Research, 7(3), 2017, 1629-1632. https://doi.org/10.48084/etasr.1125
[32] Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International, E92-16, 2017: 1-27.
[33] A. Mohamad Hanapiah, S. Islam, N. Khandoker, M. Abdul Md, Shear and hardness properties study of aa-6061 aluminium alloy lap-joints produced by friction stir spot welding process using H13 tool steel. International Journal of Engineering Materials and Manufacture, 6(3), 2021: 187-194. https://doi.org/10.26776/ijemm.06.03.2021.10
[34] G. Lakshmi Balasubramaniam, E, Boldsaikhan, G.F. Joseph Rosario, S.P. Ravichandran, S. Fukada, M. Fujimoto, K. Kamimuki, Mechanical properties and failure mechanisms of refill friction stir spot welds. Journal of Manufacturing and Materials Processing, 5(4), 2021: 118. https://doi.org/10.3390/jmmp5040118

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 7
Number 4
December 2022

Last Edition

Volume 7
Number 3
December 2022