ISSN 2466-4677; e-ISSN 2466-4847
SCImago Journal Rank
2024: SJR=0.300
CWTS Journal Indicators
2024: SNIP=0.77
ANISOTROPY AND HARDENABILITY OF INTERSTITIAL FREE STEELS UNDER THE INFLUENCE OF LOCALIZED DEFORMATION
Authors:
Filip Klejch1
Received: 26.08.2022.
Accepted: 29.09.2022.
Available: 30.09.2022.
Abstract:
Interstitial Free (IF) steels are nowadays commonly used for stamping complex parts of outer automotive bodies. Current requirements for fast production lead to the need of monitoring the real state of the material after stamping based on its real material conditions. It is desirable to describe and quantify the evolution of microstructure deformation and plastic conditions before and after the stamping process.
This paper presents Electron Backscatter Diffraction analyses of deformed and non-deformed IF steel, including the quantitative measurement of the localized plastic response of the real stamped part, using an unconventional indentation method. The effect of strain rate was evaluated using the highspeed tensile tests. The increased ratio of the Low Angle Grain Boundaries was found as a good parameter to quantify the depletion of plasticity.
Keywords:
Interstitial Free (IF) steel, local plastic response, real stamped part, high strain rate, microstructure analysis, Electron Backscatter Diffraction (EBSD), indentation
Keywords:
[1] M.A. Omar, Stamping and Metal Forming Processes, in: M.A. Omar (ed.), The Automotive Body Manufacturing Systems and Processes. Wiley & Sons, 2011: 15-105. https://doi.org/10.1002/9781119990888.ch2
[2] P. Ghosh, R.K. Ray. Deep drawable steels. In: R. Rana, S. B. Singh (ed.), Automotive Steels. Woodhead Publishing, 2017: 113-143. https://doi.org/10.1016/C2015-0-00236-2
[3] S. Hoile, Processing and properties of mild interstitial free steels. Materials science and technology, 16(10), 2000: 1079-1093. https://doi.org/10.1179/026708300101506902
[4] H. Takechi, Metallurgical Aspects on Interstitial Free Sheet Steel From Industrial Viewpoints. ISIJ International, 1994: 1-8. https://doi.org/10.2355/isijinternational.34.1
[5] A. P. da Rocha Santos, T.C. da Mota, H.V.G. Segundo, L.H. de Almeida, L.S. Araújo, A. da Cunha Rocha, Texture, microstructure and anisotropic properties of IF-steels with different additions of titanium, niobium and phosphorus. Journal of Materials Research and Technology, 7(3), 2018: 331-336. https://doi.org/10.1016/j.jmrt.2018.04.009
[6] K. Tsunoyama, Metallurgy of Ultra‐Low‐C Interstitial‐Free Sheet Steel for Automobile Applications. Physica status solidi (a), 167(2), 1998: 427-433. https://doi.org/10.1002/(SICI)1521-396X(199806)167:2<427::AIDPSSA427>3.0.CO;2-I
[7] S. Mukherjee, A. Kundu, P. Sarathi De, J. Kumar Mahato, P.C. Chakraborti, M. Shome and D. Bhattacharjee. In-situ investigation of tensile deformation behavior of cold-rolled interstitial-free high-strength steel in scanning electron microscope. Materials Science and Engineering: A, 776, 2020: 139029. https://doi.org/10.1016/j.msea.2020.139029
[8] T. Matsuno, D. Maeda, H. Shutoh, A. Uenishi, M. Suehiro, Effect of Martensite Volume Fraction on Void Formation Leading to Ductile Fracture in Dual Phase Steels. ISIJ International, 54(4), 2014: 938-944.
https://doi.org/10.2355/isijinternational.54.938
[9] R. Narayanasamy, C.S. Narayanan. Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness. Materials & Design, 29(7), 2008: 1467-1475. https://doi.org/10.1016/j.matdes.2006.09.017
[10] P. Verleysen, J. Peirs, J. Van Slycken, K. Faes, L. Duchene, Effect of strain rate on the forming behaviour of sheet metals. Journal of Materials Processing Technology, 211(8), 2011: 1457-1464.
https://doi.org/10.1016/j.jmatprotec.2011.03.018
[11] S.K. Paul, A. Raj, P. Biswas, G. Manikandan, R.K. Verma, Tensile flow behavior of ultra low carbon, low carbon and micro alloyed steel sheets for auto application under low to intermediate strain rate. Materials & Design, 57, 2014: 211-217. https://doi.org/10.1016/j.matdes.2013.12.047
[12] S. Dhara, S. Taylor, L. Figiel, D. Hudges, B. Shollock, S. Hazra, In-situ study of strain and texture evolution during continuous strain path change. In ESAFORM 2021 – 24th International Conference on Material Forming, Belgium, 2021. https://doi.org/10.25518/esaform21.2168
[13] S. Chakrabarty, M. Bhargava, H.K. Narula, P. Pant, S.K. Mishra, Prediction of strain path and forming limit curve of AHSS by incorporating microstructure evolution. The International Journal of Advanced Manufacturing Technology, 106, 2020: 5085-5098. https://doi.org/10.1007/s00170-020-04948-0
[14] C. Tasan, J.J. Hoefnagels, T. Horn, M. Geers, Experimental analysis of strain path dependent ductile damage mechanics and forming limits. Mechanics of Materials, 41(11), 2009: 1264-1276.
https://doi.org/10.1016/j.mechmat.2009.08.003
[15] K. Bowman, Mechanical behaviour of materials. John Wiley and sons, New Jersey USA, 2004.
[16] B.H. Vadavadagi, H.V. Bhujle, R.K. Khatorkar, Correction to: Role of Texture and Microstructural Developments in the Forming Limit Diagrams of Family of Interstitial Free Steels. Journal of Materials Engineering and Performance, 30, 2021: 8079. https://doi.org/10.1007/s11665-021-06078-4
[17] Y.G. Ko, K. Hamad, Development of Ultrafine Grain IF Steel via Differential Speed Rolling Technique. Metals, 2021, 2021: p.11. https://doi.org/10.3390/met11121925
[18] S. Xu, H. Xu, X. Shu, S. Li, Z. Shen, Microstructure and Texture Evolution in Low Carbon and Low Alloy Steel during Warm Deformation. Materials, 11(12), 2022: 1925. https://doi.org/10.3390/ma15072702
[19] V. Maier-Kiener, K. Durst, Advanced Nanoindentation Testing for Studying StrainRate Sensitivity and Activation Volume. JOM, 69, 2017: 2246-2255. https://doi.org/10.1007/s11837-017-2536-y
[20] J. Wehrs, G. Mohanty, G. Guillonneau, A.A. Taylor, X. Maeder, D. Frey, L. Philippe, S. Mischler, J.M. Wheeler, J. Michler, Comparison of In Situ Micromechanical Strain-Rate Sensitivity Measurement Techniques. JOM, 67, 2015: 1684-1693. https://doi.org/10.1007/s11837-015-1447-z
[21] N.Q. Chinh, T. Csanádi, J. Gubicza, R. Valiev, B. Straumal, T.G. Langdon, The Effect of Grain Boundary Sliding and Strain Rate Sensitivity on the Ductility of Ultrafine-Grained Materials. Materials Science Forum, 667-669, 2010: 677-682. https://doi.org/10.4028/www.scientific.net/MSF.667-669.677
[22] T.G. Langdon, Grain boundary sliding revisited: Developments in sliding over four decades. Journal of Materials Science, 41, 2006, 597- 609. https://doi.org/10.1007/s10853-006-6476-0
[23] D. Kiener, R. Fritz, M. Alfreider, A. Leitner, R. Pippan, V. Maier-Kiener, Rate limiting deformation mechanisms of bcc metals in confined volumes. Acta Materialia, 166, 2019:687-701. https://doi.org/10.1016/j.actamat.2019.01.02 0
[24] H. Conrad, Thermally activated deformation of metals. JOM, 16, 1964: 582-588. https://doi.org/10.1007/BF03378292
[25] A. Seeger, The Temperature and Strain-Rate Dependence of the Flow Stress of BodyCentred Cubic Metals: A Theory Based on Kink-Kink Interactions. International Journal of Materials Research, 72(6), 1981: 369-380.
https://doi.org/10.1515/ijmr-1981-720601
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
F. Klejch, E. Schmidová, T. Mejtský, Anisotropy and Hardenability of Interstitial Free Steels Under the Influence of Localized Deformation. Applied Engineering Letters, 7(3), 2022: 125–131. https://doi.org/10.18485/aeletters.2022.7.3.5
More Citation Formats
Klejch, F., Schmidová, E., & Mejtský, T. (2022). Anisotropy and Hardenability of Interstitial Free Steels Under the Influence of Localized Deformation. Applied Engineering Letters, 7(3), 125–131. https://doi.org/10.18485/aeletters.2022.7.3.5
Klejch, Filip, et al. “Anisotropy and Hardenability of Interstitial Free Steels under the Influence of Localized Deformation.” Applied Engineering Letters, vol. 7, no. 3, 2022, pp. 125–31, https://doi.org/10.18485/aeletters.2022.7.3.5.
Klejch, Filip, Eva Schmidová, and Tomáš Mejtský. 2022. “Anisotropy and Hardenability of Interstitial Free Steels under the Influence of Localized Deformation.” Applied Engineering Letters 7 (3): 125–31. https://doi.org/10.18485/aeletters.2022.7.3.5.
Klejch, F., Schmidová, E. and Mejtský, T. (2022). Anisotropy and Hardenability of Interstitial Free Steels Under the Influence of Localized Deformation. Applied Engineering Letters, 7(3), pp.125–131.
doi: 10.18485/aeletters.2022.7.3.5.
SCImago Journal Rank
2024: SJR=0.300
CWTS Journal Indicators
2024: SNIP=0.77
ANISOTROPY AND HARDENABILITY OF INTERSTITIAL FREE STEELS UNDER THE INFLUENCE OF LOCALIZED DEFORMATION
Authors:
Filip Klejch1
Received: 26.08.2022.
Accepted: 29.09.2022.
Available: 30.09.2022.
Abstract:
Interstitial Free (IF) steels are nowadays commonly used for stamping complex parts of outer automotive bodies. Current requirements for fast production lead to the need of monitoring the real state of the material after stamping based on its real material conditions. It is desirable to describe and quantify the evolution of microstructure deformation and plastic conditions before and after the stamping process.
This paper presents Electron Backscatter Diffraction analyses of deformed and non-deformed IF steel, including the quantitative measurement of the localized plastic response of the real stamped part, using an unconventional indentation method. The effect of strain rate was evaluated using the highspeed tensile tests. The increased ratio of the Low Angle Grain Boundaries was found as a good parameter to quantify the depletion of plasticity.
Keywords:
Interstitial Free (IF) steel, local plastic response, real stamped part, high strain rate, microstructure analysis, Electron Backscatter Diffraction (EBSD), indentation
Keywords:
[1] M.A. Omar, Stamping and Metal Forming Processes, in: M.A. Omar (ed.), The Automotive Body Manufacturing Systems and Processes. Wiley & Sons, 2011: 15-105, https://doi.org/10.1002/9781119990888.ch2
[2] P. Ghosh, R.K. Ray. Deep drawable steels. In: R. Rana, S. B. Singh (ed.), Automotive Steels. Woodhead Publishing, 2017: 113-143. https://doi.org/10.1016/C2015-0-00236-2
[3] S. Hoile, Processing and properties of mild interstitial free steels. Materials science and technology, 16(10), 2000: 1079-1093. https://doi.org/10.1179/026708300101506902
[4] H. Takechi, Metallurgical Aspects on Interstitial Free Sheet Steel From Industrial Viewpoints. ISIJ International, 1994: 1-8. https://doi.org/10.2355/isijinternational.34.1
[5] A. P. da Rocha Santos, T.C. da Mota, H.V.G. Segundo, L.H. de Almeida, L.S. Araújo, A. da Cunha Rocha, Texture, microstructure and anisotropic properties of IF-steels with different additions of titanium, niobium and phosphorus. Journal of Materials Research and Technology, 7(3), 2018: 331-336. https://doi.org/10.1016/j.jmrt.2018.04.009
[6] K. Tsunoyama, Metallurgy of Ultra‐Low‐C Interstitial‐Free Sheet Steel for Automobile Applications. Physica status solidi (a), 167(2), 1998: 427-433. https://doi.org/10.1002/(SICI)1521-396X(199806)167:2<427::AIDPSSA427>3.0.CO;2-I
[7] S. Mukherjee, A. Kundu, P. Sarathi De, J. Kumar Mahato, P.C. Chakraborti, M. Shome and D. Bhattacharjee. In-situ investigation of tensile deformation behavior of cold-rolled interstitial-free high-strength steel in scanning electron microscope. Materials Science and Engineering: A. 776, 2020: 139029. https://doi.org/10.1016/j.msea.2020.139029
[8] T. Matsuno, D. Maeda, H. Shutoh, A. Uenishi, M. Suehiro, Effect of Martensite Volume Fraction on Void Formation Leading to Ductile Fracture in Dual Phase Steels. ISIJ International, 54(4), 2014: 938-944. https://doi.org/10.2355/isijinternational.54.938
[9] R. Narayanasamy, C.S. Narayanan. Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness. Materials & Design. 29(7), 2008: 1467-1475. https://doi.org/10.1016/j.matdes.2006.09.017
[10] P. Verleysen, J. Peirs, J. Van Slycken, K. Faes, L. Duchene, Effect of strain rate on the forming behaviour of sheet metals. Journal of Materials Processing Technology, 211(8), 2011: 1457-1464. https://doi.org/10.1016/j.jmatprotec.2011.03.018
[11] S.K. Paul, A. Raj, P. Biswas, G. Manikandan, R.K. Verma, Tensile flow behavior of ultra low carbon, low carbon and micro alloyed steel sheets for auto application under low to intermediate strain rate. Materials & Design, 57, 2014: 211-217. https://doi.org/10.1016/j.matdes.2013.12.047
[12] S. Dhara, S. Taylor, L. Figiel, D. Hudges, B. Shollock, S. Hazra, In-situ study of strain and texture evolution during continuous strain path change. In ESAFORM 2021 – 24th International Conference on Material Forming, Belgium, 2021. https://doi.org/10.25518/esaform21.2168
[13] S. Chakrabarty, M. Bhargava, H.K. Narula, P. Pant, S.K. Mishra, Prediction of strain path and forming limit curve of AHSS by incorporating microstructure evolution. The International Journal of Advanced Manufacturing Technology, 106, 2020: 5085-5098. https://doi.org/10.1007/s00170-020-04948-0
[14] C. Tasan, J.J. Hoefnagels, T. Horn, M. Geers, Experimental analysis of strain path dependent ductile damage mechanics and forming limits, Mechanics of Materials, 41(11), 2009: 1264-1276. https://doi.org/10.1016/j.mechmat.2009.08.003
[15] K. Bowman, Mechanical behaviour of materials. John Wiley and sons, New Jersey USA, 2004.
[16] B.H. Vadavadagi, H.V. Bhujle, R.K. Khatorkar, Correction to: Role of Texture and Microstructural Developments in the Forming Limit Diagrams of Family of Interstitial Free Steels. Journal of Materials Engineering and Performance, 30, 2021: 8079. https://doi.org/10.1007/s11665-021-06078-4
[17] Y.G. Ko, K. Hamad, Development of Ultrafine Grain IF Steel via Differential Speed Rolling Technique, Metals, 2021, 2021: p.11. https://doi.org/10.3390/met11121925
[18] S. Xu, H. Xu, X. Shu, S. Li, Z. Shen, Microstructure and Texture Evolution in Low Carbon and Low Alloy Steel during Warm Deformation. Materials, 11(12), 2022: 1925. https://doi.org/10.3390/ma15072702
[19] V. Maier-Kiener, K. Durst, Advanced Nanoindentation Testing for Studying StrainRate Sensitivity and Activation Volume, JOM, 69, 2017: 2246-2255. https://doi.org/10.1007/s11837-017-2536-y
[20] J. Wehrs, G. Mohanty, G. Guillonneau, A.A. Taylor, X. Maeder, D. Frey, L. Philippe, S. Mischler, J.M. Wheeler, J. Michler, Comparison of In Situ Micromechanical Strain-Rate Sensitivity Measurement Techniques. JOM, 67, 2015: 1684-1693. https://doi.org/10.1007/s11837-015-1447-z
[21] N.Q. Chinh, T. Csanádi, J. Gubicza, R. Valiev, B. Straumal, T.G. Langdon, The Effect of Grain Boundary Sliding and Strain Rate Sensitivity on the Ductility of Ultrafine-Grained Materials. Materials Science Forum, 667-669, 2010: 677-682. https://doi.org/10.4028/www.scientific.net/MSF.667-669.677
[22] T.G. Langdon, Grain boundary sliding revisited: Developments in sliding over four decades. Journal of Materials Science, 41, 2006, 597- 609. https://doi.org/10.1007/s10853-006-6476-0
[23] D. Kiener, R. Fritz, M. Alfreider, A. Leitner, R. Pippan, V. Maier-Kiener, Rate limiting deformation mechanisms of bcc metals in confined volumes. Acta Materialia, 166, 2019:687-701. https://doi.org/10.1016/j.actamat.2019.01.02 0
[24] H. Conrad, Thermally activated deformation of metals. JOM, 16, 1964: 582-588. https://doi.org/10.1007/BF03378292
[25] A. Seeger, The Temperature and Strain-Rate Dependence of the Flow Stress of BodyCentred Cubic Metals: A Theory Based on Kink- Kink Interactions. International Journal of Materials Research, 72(6), 1981: 369-380. https://doi.org/10.1515/ijmr-1981-720601
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)