Journal Menu
Archive
Last Edition

WAVES FORMATION IN CAPILLARY VOLUMES OF MAGNETIC FLUID

Authors:

A.Ya. Simonovskii1,2,

, N.A. Shatalov1,3
, P.A. Assorov1
, A.R. Zakinyan1

1North-Caucasus Federal University, Stavropol, Russia
2Stavropol State Agrarian University, Stavropol, Russia
3Stavropol College of Communications named after V.A. Petrov, Stavropol, Russia

Received: 28.03.2022.
Accepted: 23.09.2022.
Available: 30.09.2022.

Abstract:

This paper presents experimental studies of the influence of an alternating magnetic field on the separation of magnetic liquid droplets from a capillary hole. The formation of waves on the surface of capillary volumes of a magnetic fluid flowing out of a capillary hole in a horizontal non-magnetic plate under the action of gravity in external alternating magnetic field is detected. Spherical, dumbbell-shaped, jet-shaped, and comb-shaped droplet geometries were observed. It is established that the shape of the waves formed could vary from waves running and standing on the surface of a growing drop to bending oscillations of a vertical fluid jet. The magnetic field parameters at which different instability patterns are observed were determined.

Keywords:

Magnetic fluid, Droplets separation, Jets, Surface waves, Instability

References:

[1] A. Zakinyan, L. Mkrtchyan, Y. Dikansky, Experimental investigation of surface instability of a thin layer of a magnetic fluid. European Journal of Mechanics B/Fluids, 56, 2016: 172-177. https://doi.org/10.1016/j.euromechflu.2015.12.005
[2] L. Mkrtchyan, A. Zakinyan, Y. Dikansky, Electrocapillary instability of magnetic fluid peak. Langmuir, 29, 2013: 9098-9103. https://doi.org/10.1021/la4014625
[3] A.R. Zakinyan, L.S. Mkrtchyan, Instability of the ferrofluid layer on a magnetizable substrate in a perpendicular magnetic field. Magnetohydrodynamics, 48, 2012: 615-621.
[4] D. Rannacher, A. Engel, Double Rosensweig instability in a ferrofluid sandwich structure. Physical Review E, 69, 2004: 066306. https://doi.org/10.1103/PhysRevE.69.066306
[5] C. Groh, R. Richter, I. Rehberg, F.H. Busse, Reorientation of a hexagonal pattern under broken symmetry: The hexagon flip. Physical Review E, 76, 2007: 055301(R).
[6] A. Alabuzhev, I. Volodin, Linear instability of forced oscillations of a thin ferrofluid film in a vertical magnetic field. Microgravity Science and Technology, 34, 2022: 91. https://doi.org/10.1007/s12217-022-10014-z
[7] L. Huang, D.L. Michels, Surface-only ferrofluids. ACM Transactions on Graphics, 39, 2020: 174.
https://doi.org/10.1145/3414685.3417799
[8] Á. Romero-Calvo, A.J. García-Salcedo, F. Garrone, I. Rivoalen, F. Maggi, Lateral and axisymmetric ferrofluid oscillations in a cylindrical tank in microgravity. AIAA Journal, 60, 2022: 2707-2712. https://doi.org/10.2514/1.J061351
[9] C.A. Khokhryakova, E.V. Kolesnichenko, Waves on a free surface of ferrofluid layer, laying on a liquid substrate. Journal of Physics: Conference Series, 1945, 2021: 012016. https://doi.org/10.1088/1742-6596/1945/1/012016
[10] A.V. Lebedev, A. Engel, K.I. Morozov, H. Bauke, Ferrofluid drops in rotating magnetic fields. New Journal of Physics, 5, 2003: 57.1-57.20. https://doi.org/10.1088/1367-2630/5/1/357
[11] N.-T. Nguyen, A. Beyzavi, K.M. Ng, X. Huang, Kinematics and deformation of ferrofluid droplets under magnetic actuation. Microfluidics and Nanofluidics, 3, 2007: 571-579. https://doi.org/10.1007/s10404-007-0150-y
[12] G.-P. Zhu, N.-T. Nguyen, R.V. Ramanujan, X.-Y. Huang, Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir, 27, 2011: 14834-14841. https://doi.org/10.1021/la203931q
[13] T. Jamin, C. Py, E. Falcon, Instability of the origami of a ferrofluid drop in a magnetic field. Physical Review Letters, 107, 2011: 204503. https://doi.org/10.1103/PhysRevLett.107.204503
[14] R. Deb, B. Sarma, A. Dalal, Magnetowetting dynamics of sessile ferrofluid droplets: a review. Soft Matter, 18, 2022: 2287-2324. https://doi.org/10.1039/D1SM01569A
[15] J.-C. Shih, H.-Y. Chu, Observations of rotating ferrofluid drop in a time-varying magnetic field. Physics of Fluids, 34, 2022: 014103. https://doi.org/10.1063/5.0079578  https://doi.org/10.1017/jfm.2021.171
[16] N.-T. Nguyen, Micro – magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics and Nanofluidics, 12, 2012: 1-16. https://doi.org/10.1007/s10404-011-0903-5
[17] N. Havard, F. Risso, Ph. Tordjeman, Breakup of a pendant magnetic drop. Physical Review E, 88, 2013: 013014. https://doi.org/10.1103/PhysRevE.88.013014
[18] X. Fan, X. Dong, A.C. Karacakol, H. Xie, M. Sitti, Reconfigurable multifunctional ferrofluid droplet robots. PNAS, 117, 2020: 27916-27926. https://doi.org/10.1073/pnas.2016388117
[19] T. Ody, M. Panth, A.D. Sommers, K.F. Eid, Controlling the motion of ferrofluid droplets using surface tension gradients and magnetoviscous pinning. Langmuir, 32, 2016:6967-6976. https://doi.org/10.1021/acs.langmuir.6b01030
[20] M.A. Bijarchi, A. Favakeh, E. Sedighi, M.B. Shafii, Ferrofluid droplet manipulation using an adjustable alternating magnetic field. Sensors and Actuators A: Physical, 301, 2020:111753. https://doi.org/10.1016/j.sna.2019.111753
[21] A. Zakinyan, O. Nechaeva, Yu. Dikansky, Motion of a deformable drop of magnetic fluid on a solid surface in a rotating magnetic field. Experimental Thermal and Fluid Science, 39, 2012: 265-268.
https://doi.org/10.1016/j.expthermflusci.2012.01.003
[22] M. Síkora, T. Sabadoš, M. Šviková, M. Timko, Flowing of magnetic fluid with free surface and drop formation. Physics Procedia, 9, 2010:194-198. https://doi.org/10.1016/j.phpro.2010.11.044
[23] M. Habera, M. Fabian, M. Šviková, M. Timko, The influence of magnetic field on free surface ferrofluid flow. Magnetohydrodynamics, 49, 2013: 402-406.
[24] M. Fabian, P. Burda, M. Šviková, R. Huňady, The influence of magnetic field on the separation of droplets from ferrofluid jet. Journal of Magnetism and Magnetic Materials, 431, 2017: 196-200.
https://doi.org/10.1016/j.jmmm.2016.09.052
[25] A. Zakinyan, Instability of a magnetic fluid jet in a transverse magnetic field. Chemical Engineering Communication, 204, 2017: 434-439. https://doi.org/10.1080/00986445.2016.1277343
[26] R. Canu, M.-C. Renoult, Linear stability analysis of a Newtonian ferrofluid cylinder under a magnetic field. Journal of Fluid Mechanics, 915, 2021: A137.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 3
September 2024

Last Edition

Volume 9
Number 3
September 2024

How to Cite

A.Ya. Simonovskii, N.A. Shatalov, P.A. Assorov, A.R. Zakinyan, Waves Formation in Capillary Volumes of Magnetic Fluid. Applied Engineering Letters, 7(3), 2022: 118–124.
https://doi.org/10.18485/aeletters.2022.7.3.4

More Citation Formats

Simonovskii, A. Ya., Shatalov, N. A., Assorov, P. A., & Zakinyan, A. R. (2022). Waves Formation in Capillary Volumes of Magnetic Fluid. Applied Engineering Letters7(3), 118–124. https://doi.org/10.18485/aeletters.2022.7.3.4

Simonovskii, A. Ya., et al. “Waves Formation in Capillary Volumes of Magnetic Fluid.” Applied Engineering Letters, vol. 7, no. 3, 2022, pp. 118–24, https://doi.org/10.18485/aeletters.2022.7.3.4.

Simonovskii, A.Ya., N.A. Shatalov, P.A. Assorov, and A.R. Zakinyan. 2022. “Waves Formation in Capillary Volumes of Magnetic Fluid.” Applied Engineering Letters 7 (3): 118–24. https://doi.org/10.18485/aeletters.2022.7.3.4.

Simonovskii, A.Ya., Shatalov, N.A., Assorov, P.A. and Zakinyan, A.R. (2022). Waves Formation in Capillary Volumes of Magnetic Fluid. Applied Engineering Letters, 7(3), pp.118–124.
doi: 10.18485/aeletters.2022.7.3.4.

WAVES FORMATION IN CAPILLARY VOLUMES OF MAGNETIC FLUID

Authors:

A.Ya. Simonovskii1,2,

, N.A. Shatalov1,3
, P.A. Assorov1
, A.R. Zakinyan1

1North-Caucasus Federal University, Stavropol, Russia
2Stavropol State Agrarian University, Stavropol, Russia
3Stavropol College of Communications named after V.A. Petrov, Stavropol, Russia

Received: 28.03.2022.
Accepted: 23.09.2022.
Available: 30.09.2022.

Abstract:

This paper presents experimental studies of the influence of an alternating magnetic field on the separation of magnetic liquid droplets from a capillary hole. The formation of waves on the surface of capillary volumes of a magnetic fluid flowing out of a capillary hole in a horizontal non-magnetic plate under the action of gravity in external alternating magnetic field is detected. Spherical, dumbbell-shaped, jet-shaped, and comb-shaped droplet geometries were observed. It is established that the shape of the waves formed could vary from waves running and standing on the surface of a growing drop to bending oscillations of a vertical fluid jet. The magnetic field parameters at which different instability patterns are observed were determined.

Keywords:

Magnetic fluid, Droplets separation, Jets, Surface waves, Instability

References:

[1] A. Zakinyan, L. Mkrtchyan, Y. Dikansky, Experimental investigation of surface instability of a thin layer of a magnetic fluid. European Journal of Mechanics B/Fluids, 56, 2016: 172-177. https://doi.org/10.1016/j.euromechflu.2015.12.005
[2] L. Mkrtchyan, A. Zakinyan, Y. Dikansky, Electrocapillary instability of magnetic fluid peak. Langmuir, 29, 2013: 9098-9103. https://doi.org/10.1021/la4014625
[3] A.R. Zakinyan, L.S. Mkrtchyan, Instability of the ferrofluid layer on a magnetizable substrate in a perpendicular magnetic field. Magnetohydrodynamics, 48, 2012: 615-621.
[4] D. Rannacher, A. Engel, Double Rosensweig instability in a ferrofluid sandwich structure. Physical Review E, 69, 2004: 066306. https://doi.org/10.1103/PhysRevE.69.066306
[5] C. Groh, R. Richter, I. Rehberg, F.H. Busse, Reorientation of a hexagonal pattern under broken symmetry: The hexagon flip. Physical Review E, 76, 2007: 055301(R).
[6] A. Alabuzhev, I. Volodin, Linear instability of forced oscillations of a thin ferrofluid film in a vertical magnetic field. Microgravity Science and Technology, 34, 2022: 91. https://doi.org/10.1007/s12217-022-10014-z
[7] L. Huang, D.L. Michels, Surface-only ferrofluids. ACM Transactions on Graphics, 39, 2020: 174. https://doi.org/10.1145/3414685.3417799
[8] Á. Romero-Calvo, A.J. García-Salcedo, F. Garrone, I. Rivoalen, F. Maggi, Lateral and axisymmetric ferrofluid oscillations in a cylindrical tank in microgravity. AIAA Journal, 60, 2022: 2707-2712. https://doi.org/10.2514/1.J061351
[9] C.A. Khokhryakova, E.V. Kolesnichenko, Waves on a free surface of ferrofluid layer, laying on a liquid substrate. Journal of Physics: Conference Series, 1945, 2021: 012016. https://doi.org/10.1088/1742-6596/1945/1/012016
[10] A.V. Lebedev, A. Engel, K.I. Morozov, H. Bauke, Ferrofluid drops in rotating magnetic fields. New Journal of Physics, 5, 2003: 57.1-57.20. https://doi.org/10.1088/1367-2630/5/1/357
[11] N.-T. Nguyen, A. Beyzavi, K.M. Ng, X. Huang, Kinematics and deformation of ferrofluid droplets under magnetic actuation. Microfluidics and Nanofluidics, 3, 2007: 571-579. https://doi.org/10.1007/s10404-007-0150-y
[12] G.-P. Zhu, N.-T. Nguyen, R.V. Ramanujan, X.-Y. Huang, Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir, 27, 2011: 14834-14841. https://doi.org/10.1021/la203931q
[13] T. Jamin, C. Py, E. Falcon, Instability of the origami of a ferrofluid drop in a magnetic field. Physical Review Letters, 107, 2011: 204503. https://doi.org/10.1103/PhysRevLett.107.204503
[14] R. Deb, B. Sarma, A. Dalal, Magnetowetting dynamics of sessile ferrofluid droplets: a review. Soft Matter, 18, 2022: 2287-2324. https://doi.org/10.1039/D1SM01569A
[15] J.-C. Shih, H.-Y. Chu, Observations of rotating ferrofluid drop in a time-varying magnetic field. Physics of Fluids, 34, 2022: 014103. https://doi.org/10.1063/5.0079578  https://doi.org/10.1017/jfm.2021.171
[16] N.-T. Nguyen, Micro – magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics and Nanofluidics, 12, 2012: 1-16. https://doi.org/10.1007/s10404-011-0903-5
[17] N. Havard, F. Risso, Ph. Tordjeman, Breakup of a pendant magnetic drop. Physical Review E, 88, 2013: 013014. https://doi.org/10.1103/PhysRevE.88.013014
[18] X. Fan, X. Dong, A.C. Karacakol, H. Xie, M. Sitti, Reconfigurable multifunctional ferrofluid droplet robots. PNAS, 117, 2020: 27916-27926. https://doi.org/10.1073/pnas.2016388117
[19] T. Ody, M. Panth, A.D. Sommers, K.F. Eid, Controlling the motion of ferrofluid droplets using surface tension gradients and magnetoviscous pinning. Langmuir, 32, 2016:6967-6976.https://doi.org/10.1021/acs.langmuir.6b01030
[20] M.A. Bijarchi, A. Favakeh, E. Sedighi, M.B. Shafii, Ferrofluid droplet manipulation using an adjustable alternating magnetic field. Sensors and Actuators A: Physical, 301, 2020:111753. https://doi.org/10.1016/j.sna.2019.111753
[21] A. Zakinyan, O. Nechaeva, Yu. Dikansky, Motion of a deformable drop of magnetic fluid on a solid surface in a rotating magnetic field. Experimental Thermal and Fluid Science, 39, 2012: 265-268. https://doi.org/10.1016/j.expthermflusci.2012.01.003
[22] M. Síkora, T. Sabadoš, M. Šviková, M. Timko, Flowing of magnetic fluid with free surface and drop formation. Physics Procedia, 9, 2010:194-198. https://doi.org/10.1016/j.phpro.2010.11.044
[23] M. Habera, M. Fabian, M. Šviková, M. Timko, The influence of magnetic field on free surface ferrofluid flow. Magnetohydrodynamics, 49, 2013: 402-406.
[24] M. Fabian, P. Burda, M. Šviková, R. Huňady, The influence of magnetic field on the separation of droplets from ferrofluid jet. Journal of Magnetism and Magnetic Materials, 431, 2017: 196-200. https://doi.org/10.1016/j.jmmm.2016.09.052
[25] A. Zakinyan, Instability of a magnetic fluid jet in a transverse magnetic field. Chemical Engineering Communication, 204, 2017: 434-439. https://doi.org/10.1080/00986445.2016.1277343
[26] R. Canu, M.-C. Renoult, Linear stability analysis of a Newtonian ferrofluid cylinder under a magnetic field. Journal of Fluid Mechanics, 915, 2021: A137.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 3
September 2024

Last Edition

Volume 9
Number 3
September 2024