Journal Menu
Archive
Last Edition

WAVES FORMATION IN CAPILLARY VOLUMES OF MAGNETIC FLUID

Authors:

A.Ya. Simonovskii1,2,

, N.A. Shatalov1,3
, P.A. Assorov1
, A.R. Zakinyan1

1North-Caucasus Federal University, Stavropol, Russia
2Stavropol State Agrarian University, Stavropol, Russia
3Stavropol College of Communications named after V.A. Petrov, Stavropol, Russia

Received: 28.03.2022.
Accepted: 23.09.2022.
Available: 30.09.2022.

Abstract:

This paper presents experimental studies of the influence of an alternating magnetic field on the separation of magnetic liquid droplets from a capillary hole. The formation of waves on the surface of capillary volumes of a magnetic fluid flowing out of a capillary hole in a horizontal non-magnetic plate under the action of gravity in external alternating magnetic field is detected. Spherical, dumbbell-shaped, jet-shaped, and comb-shaped droplet geometries were observed. It is established that the shape of the waves formed could vary from waves running and standing on the surface of a growing drop to bending oscillations of a vertical fluid jet. The magnetic field parameters at which different instability patterns are observed were determined.

Keywords:

Magnetic fluid, Droplets separation, Jets, Surface waves, Instability

References:

[1] A. Zakinyan, L. Mkrtchyan, Y. Dikansky, Experimental investigation of surface instability of a thin layer of a magnetic fluid. European Journal of Mechanics B/Fluids, 56, 2016: 172-177. https://doi.org/10.1016/j.euromechflu.2015.12.005
[2] L. Mkrtchyan, A. Zakinyan, Y. Dikansky, Electrocapillary instability of magnetic fluid peak. Langmuir, 29, 2013: 9098-9103. https://doi.org/10.1021/la4014625
[3] A.R. Zakinyan, L.S. Mkrtchyan, Instability of the ferrofluid layer on a magnetizable substrate in a perpendicular magnetic field. Magnetohydrodynamics, 48, 2012: 615-621.
[4] D. Rannacher, A. Engel, Double Rosensweig instability in a ferrofluid sandwich structure. Physical Review E, 69, 2004: 066306. https://doi.org/10.1103/PhysRevE.69.066306
[5] C. Groh, R. Richter, I. Rehberg, F.H. Busse, Reorientation of a hexagonal pattern under broken symmetry: The hexagon flip. Physical Review E, 76, 2007: 055301(R).
[6] A. Alabuzhev, I. Volodin, Linear instability of forced oscillations of a thin ferrofluid film in a vertical magnetic field. Microgravity Science and Technology, 34, 2022: 91. https://doi.org/10.1007/s12217-022-10014-z
[7] L. Huang, D.L. Michels, Surface-only ferrofluids. ACM Transactions on Graphics, 39, 2020: 174.
https://doi.org/10.1145/3414685.3417799
[8] Á. Romero-Calvo, A.J. García-Salcedo, F. Garrone, I. Rivoalen, F. Maggi, Lateral and axisymmetric ferrofluid oscillations in a cylindrical tank in microgravity. AIAA Journal, 60, 2022: 2707-2712. https://doi.org/10.2514/1.J061351
[9] C.A. Khokhryakova, E.V. Kolesnichenko, Waves on a free surface of ferrofluid layer, laying on a liquid substrate. Journal of Physics: Conference Series, 1945, 2021: 012016. https://doi.org/10.1088/1742-6596/1945/1/012016
[10] A.V. Lebedev, A. Engel, K.I. Morozov, H. Bauke, Ferrofluid drops in rotating magnetic fields. New Journal of Physics, 5, 2003: 57.1-57.20. https://doi.org/10.1088/1367-2630/5/1/357
[11] N.-T. Nguyen, A. Beyzavi, K.M. Ng, X. Huang, Kinematics and deformation of ferrofluid droplets under magnetic actuation. Microfluidics and Nanofluidics, 3, 2007: 571-579. https://doi.org/10.1007/s10404-007-0150-y
[12] G.-P. Zhu, N.-T. Nguyen, R.V. Ramanujan, X.-Y. Huang, Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir, 27, 2011: 14834-14841. https://doi.org/10.1021/la203931q
[13] T. Jamin, C. Py, E. Falcon, Instability of the origami of a ferrofluid drop in a magnetic field. Physical Review Letters, 107, 2011: 204503. https://doi.org/10.1103/PhysRevLett.107.204503
[14] R. Deb, B. Sarma, A. Dalal, Magnetowetting dynamics of sessile ferrofluid droplets: a review. Soft Matter, 18, 2022: 2287-2324. https://doi.org/10.1039/D1SM01569A
[15] J.-C. Shih, H.-Y. Chu, Observations of rotating ferrofluid drop in a time-varying magnetic field. Physics of Fluids, 34, 2022: 014103. https://doi.org/10.1063/5.0079578  https://doi.org/10.1017/jfm.2021.171
[16] N.-T. Nguyen, Micro – magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics and Nanofluidics, 12, 2012: 1-16. https://doi.org/10.1007/s10404-011-0903-5
[17] N. Havard, F. Risso, Ph. Tordjeman, Breakup of a pendant magnetic drop. Physical Review E, 88, 2013: 013014. https://doi.org/10.1103/PhysRevE.88.013014
[18] X. Fan, X. Dong, A.C. Karacakol, H. Xie, M. Sitti, Reconfigurable multifunctional ferrofluid droplet robots. PNAS, 117, 2020: 27916-27926. https://doi.org/10.1073/pnas.2016388117
[19] T. Ody, M. Panth, A.D. Sommers, K.F. Eid, Controlling the motion of ferrofluid droplets using surface tension gradients and magnetoviscous pinning. Langmuir, 32, 2016:6967-6976. https://doi.org/10.1021/acs.langmuir.6b01030
[20] M.A. Bijarchi, A. Favakeh, E. Sedighi, M.B. Shafii, Ferrofluid droplet manipulation using an adjustable alternating magnetic field. Sensors and Actuators A: Physical, 301, 2020:111753. https://doi.org/10.1016/j.sna.2019.111753
[21] A. Zakinyan, O. Nechaeva, Yu. Dikansky, Motion of a deformable drop of magnetic fluid on a solid surface in a rotating magnetic field. Experimental Thermal and Fluid Science, 39, 2012: 265-268.
https://doi.org/10.1016/j.expthermflusci.2012.01.003
[22] M. Síkora, T. Sabadoš, M. Šviková, M. Timko, Flowing of magnetic fluid with free surface and drop formation. Physics Procedia, 9, 2010:194-198. https://doi.org/10.1016/j.phpro.2010.11.044
[23] M. Habera, M. Fabian, M. Šviková, M. Timko, The influence of magnetic field on free surface ferrofluid flow. Magnetohydrodynamics, 49, 2013: 402-406.
[24] M. Fabian, P. Burda, M. Šviková, R. Huňady, The influence of magnetic field on the separation of droplets from ferrofluid jet. Journal of Magnetism and Magnetic Materials, 431, 2017: 196-200.
https://doi.org/10.1016/j.jmmm.2016.09.052
[25] A. Zakinyan, Instability of a magnetic fluid jet in a transverse magnetic field. Chemical Engineering Communication, 204, 2017: 434-439. https://doi.org/10.1080/00986445.2016.1277343
[26] R. Canu, M.-C. Renoult, Linear stability analysis of a Newtonian ferrofluid cylinder under a magnetic field. Journal of Fluid Mechanics, 915, 2021: A137.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 1
March 2025

Loading

Last Edition

Volume 10
Number 1
March 2025

How to Cite

A.Ya. Simonovskii, N.A. Shatalov, P.A. Assorov, A.R. Zakinyan, Waves Formation in Capillary Volumes of Magnetic Fluid. Applied Engineering Letters, 7(3), 2022: 118–124.
https://doi.org/10.18485/aeletters.2022.7.3.4

More Citation Formats

Simonovskii, A. Ya., Shatalov, N. A., Assorov, P. A., & Zakinyan, A. R. (2022). Waves Formation in Capillary Volumes of Magnetic Fluid. Applied Engineering Letters7(3), 118–124. https://doi.org/10.18485/aeletters.2022.7.3.4

Simonovskii, A. Ya., et al. “Waves Formation in Capillary Volumes of Magnetic Fluid.” Applied Engineering Letters, vol. 7, no. 3, 2022, pp. 118–24, https://doi.org/10.18485/aeletters.2022.7.3.4.

Simonovskii, A.Ya., N.A. Shatalov, P.A. Assorov, and A.R. Zakinyan. 2022. “Waves Formation in Capillary Volumes of Magnetic Fluid.” Applied Engineering Letters 7 (3): 118–24. https://doi.org/10.18485/aeletters.2022.7.3.4.

Simonovskii, A.Ya., Shatalov, N.A., Assorov, P.A. and Zakinyan, A.R. (2022). Waves Formation in Capillary Volumes of Magnetic Fluid. Applied Engineering Letters, 7(3), pp.118–124.
doi: 10.18485/aeletters.2022.7.3.4.

WAVES FORMATION IN CAPILLARY VOLUMES OF MAGNETIC FLUID

Authors:

A.Ya. Simonovskii1,2,

, N.A. Shatalov1,3
, P.A. Assorov1
, A.R. Zakinyan1

1North-Caucasus Federal University, Stavropol, Russia
2Stavropol State Agrarian University, Stavropol, Russia
3Stavropol College of Communications named after V.A. Petrov, Stavropol, Russia

Received: 28.03.2022.
Accepted: 23.09.2022.
Available: 30.09.2022.

Abstract:

This paper presents experimental studies of the influence of an alternating magnetic field on the separation of magnetic liquid droplets from a capillary hole. The formation of waves on the surface of capillary volumes of a magnetic fluid flowing out of a capillary hole in a horizontal non-magnetic plate under the action of gravity in external alternating magnetic field is detected. Spherical, dumbbell-shaped, jet-shaped, and comb-shaped droplet geometries were observed. It is established that the shape of the waves formed could vary from waves running and standing on the surface of a growing drop to bending oscillations of a vertical fluid jet. The magnetic field parameters at which different instability patterns are observed were determined.

Keywords:

Magnetic fluid, Droplets separation, Jets, Surface waves, Instability

References:

[1] A. Zakinyan, L. Mkrtchyan, Y. Dikansky, Experimental investigation of surface instability of a thin layer of a magnetic fluid. European Journal of Mechanics B/Fluids, 56, 2016: 172-177. https://doi.org/10.1016/j.euromechflu.2015.12.005
[2] L. Mkrtchyan, A. Zakinyan, Y. Dikansky, Electrocapillary instability of magnetic fluid peak. Langmuir, 29, 2013: 9098-9103. https://doi.org/10.1021/la4014625
[3] A.R. Zakinyan, L.S. Mkrtchyan, Instability of the ferrofluid layer on a magnetizable substrate in a perpendicular magnetic field. Magnetohydrodynamics, 48, 2012: 615-621.
[4] D. Rannacher, A. Engel, Double Rosensweig instability in a ferrofluid sandwich structure. Physical Review E, 69, 2004: 066306. https://doi.org/10.1103/PhysRevE.69.066306
[5] C. Groh, R. Richter, I. Rehberg, F.H. Busse, Reorientation of a hexagonal pattern under broken symmetry: The hexagon flip. Physical Review E, 76, 2007: 055301(R).
[6] A. Alabuzhev, I. Volodin, Linear instability of forced oscillations of a thin ferrofluid film in a vertical magnetic field. Microgravity Science and Technology, 34, 2022: 91. https://doi.org/10.1007/s12217-022-10014-z
[7] L. Huang, D.L. Michels, Surface-only ferrofluids. ACM Transactions on Graphics, 39, 2020: 174. https://doi.org/10.1145/3414685.3417799
[8] Á. Romero-Calvo, A.J. García-Salcedo, F. Garrone, I. Rivoalen, F. Maggi, Lateral and axisymmetric ferrofluid oscillations in a cylindrical tank in microgravity. AIAA Journal, 60, 2022: 2707-2712. https://doi.org/10.2514/1.J061351
[9] C.A. Khokhryakova, E.V. Kolesnichenko, Waves on a free surface of ferrofluid layer, laying on a liquid substrate. Journal of Physics: Conference Series, 1945, 2021: 012016. https://doi.org/10.1088/1742-6596/1945/1/012016
[10] A.V. Lebedev, A. Engel, K.I. Morozov, H. Bauke, Ferrofluid drops in rotating magnetic fields. New Journal of Physics, 5, 2003: 57.1-57.20. https://doi.org/10.1088/1367-2630/5/1/357
[11] N.-T. Nguyen, A. Beyzavi, K.M. Ng, X. Huang, Kinematics and deformation of ferrofluid droplets under magnetic actuation. Microfluidics and Nanofluidics, 3, 2007: 571-579. https://doi.org/10.1007/s10404-007-0150-y
[12] G.-P. Zhu, N.-T. Nguyen, R.V. Ramanujan, X.-Y. Huang, Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir, 27, 2011: 14834-14841. https://doi.org/10.1021/la203931q
[13] T. Jamin, C. Py, E. Falcon, Instability of the origami of a ferrofluid drop in a magnetic field. Physical Review Letters, 107, 2011: 204503. https://doi.org/10.1103/PhysRevLett.107.204503
[14] R. Deb, B. Sarma, A. Dalal, Magnetowetting dynamics of sessile ferrofluid droplets: a review. Soft Matter, 18, 2022: 2287-2324. https://doi.org/10.1039/D1SM01569A
[15] J.-C. Shih, H.-Y. Chu, Observations of rotating ferrofluid drop in a time-varying magnetic field. Physics of Fluids, 34, 2022: 014103. https://doi.org/10.1063/5.0079578  https://doi.org/10.1017/jfm.2021.171
[16] N.-T. Nguyen, Micro – magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics and Nanofluidics, 12, 2012: 1-16. https://doi.org/10.1007/s10404-011-0903-5
[17] N. Havard, F. Risso, Ph. Tordjeman, Breakup of a pendant magnetic drop. Physical Review E, 88, 2013: 013014. https://doi.org/10.1103/PhysRevE.88.013014
[18] X. Fan, X. Dong, A.C. Karacakol, H. Xie, M. Sitti, Reconfigurable multifunctional ferrofluid droplet robots. PNAS, 117, 2020: 27916-27926. https://doi.org/10.1073/pnas.2016388117
[19] T. Ody, M. Panth, A.D. Sommers, K.F. Eid, Controlling the motion of ferrofluid droplets using surface tension gradients and magnetoviscous pinning. Langmuir, 32, 2016:6967-6976.https://doi.org/10.1021/acs.langmuir.6b01030
[20] M.A. Bijarchi, A. Favakeh, E. Sedighi, M.B. Shafii, Ferrofluid droplet manipulation using an adjustable alternating magnetic field. Sensors and Actuators A: Physical, 301, 2020:111753. https://doi.org/10.1016/j.sna.2019.111753
[21] A. Zakinyan, O. Nechaeva, Yu. Dikansky, Motion of a deformable drop of magnetic fluid on a solid surface in a rotating magnetic field. Experimental Thermal and Fluid Science, 39, 2012: 265-268. https://doi.org/10.1016/j.expthermflusci.2012.01.003
[22] M. Síkora, T. Sabadoš, M. Šviková, M. Timko, Flowing of magnetic fluid with free surface and drop formation. Physics Procedia, 9, 2010:194-198. https://doi.org/10.1016/j.phpro.2010.11.044
[23] M. Habera, M. Fabian, M. Šviková, M. Timko, The influence of magnetic field on free surface ferrofluid flow. Magnetohydrodynamics, 49, 2013: 402-406.
[24] M. Fabian, P. Burda, M. Šviková, R. Huňady, The influence of magnetic field on the separation of droplets from ferrofluid jet. Journal of Magnetism and Magnetic Materials, 431, 2017: 196-200. https://doi.org/10.1016/j.jmmm.2016.09.052
[25] A. Zakinyan, Instability of a magnetic fluid jet in a transverse magnetic field. Chemical Engineering Communication, 204, 2017: 434-439. https://doi.org/10.1080/00986445.2016.1277343
[26] R. Canu, M.-C. Renoult, Linear stability analysis of a Newtonian ferrofluid cylinder under a magnetic field. Journal of Fluid Mechanics, 915, 2021: A137.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 1
March 2025

Loading

Last Edition

Volume 10
Number 1
March 2025

live macau
live macau 5D
live macau
live macau
live macau
live macau
live sdy lotto
Live sdy
Live hk lotto
Live hk lotto
Live china
Live japan
Live Draw Sgp
Live taiwan
Live taiwan
Live cambodia
Live cambodia
situs toto
jatimtoto
jatimtoto
jatim toto
bandar toto macau
cheat slot
bandar toto macau
paito macau
paito sydney
paito singapore
paito hk
roulette
slot77
rtp slot gacor hari ini
slot deposit via qris
demo slot majong ways
rtp slot gacor hari ini