Journal Menu
Archive
Last Edition

THE EFFECT OF MANGANESE ON Fe-RICH INTERMETALLIC PHASES IN PROGRESSIVE SECONDARY AlSi7Mg0.6 ALLOY

Authors:

Lucia Pastierovičová1

, Lenka Kuchariková1
, Eva Tillová1
, Mária Chalupová1

,

Miroslaw Bonek2

1University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
2Faculty of Mechanical Engineering, Department of Materials Engineering and Biomaterials, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland

Received: 13.07.2022.
Accepted: 22.09.2022.
Available: 30.09.2022.

Abstract:

The contribution describes the major problem with the secondary (recycled) alloys as the presence of unwanted elements due to the remelting of Alscrap negatively affecting the quality of AlSi7Mg0.6 cast alloy. Iron is the most harmful impurity in the secondary Al-Si alloys, leading to the formation of β-Fe-rich (Al5FeSi) intermetallic phases that promotes forming of casting defects such as porosity and shrinkage by its needle-like shape. Suitable neutralizer alloying elements, such as Mn, influence the formation of Fe-needle-like phases and lead to the formation of less harmful Mncontaining α-Fe-rich phases. To optimize the morphology and properties of alloys, it is necessary to study the effects of individual alloying elements. Therefore, this study is focused on the effect of Mn addition on Fe-rich intermetallic phases and casting defects, thus the evaluation of its shape and distribution in AlSi7Mg0.6 secondary alloy.

Keywords:

Secondary aluminium alloy, iron content, quantitative analysis, porosity, Fe-rich phases, microstructural changes, sludge

References:

[1] Vision 2050: European Aluminium’s Contribution to the EU’s Mid-Century LowCarbon Roadmap. Available on-line on http://www.european-aluminium.eu/
[2] International Aluminium Institute. Available on-line on: https://www.lightmetalage.com/tag/international-aluminium-institute/
[3] D. Závodská, E. Tillová, I. Švecová, M. Chalupová, L. Kuchariková, J. Belan, The Effect of Iron Content on Microstructure and Porosity of Secondary AlSi7Mg0.3 Cast Alloy. Periodica Polytechnica Transportation Engineering, 47 (4), 2019: 283-289. https://doi.org/10.3311/PPtr.12101
[4] Circular Aluminium Action plan: A Strategy for Achieving Aluminiums Full Potential for Circular Economy by 2030. Available on-line on http://www.european-aluminium.eu/
[5] B. Zhou, S. Zhang, R. Lin, Y. Jiang, X. Lan, Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties. Journal of Alloys and Compounds, 879, 2021: 160407.
https://doi.org/10.1016/j.jallcom.2021.160407
[6] D. Brough, H. Jouhara, The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermofluids, 1-2, 2020: 100007.
https://doi.org/10.1016/j.ijft.2019.100007
[7] L. Kuchariková, E. Tillová, O. Bokůvka, Recycling and properties of recycled aluminium alloys used in the transportation industry. Transport Problems, 11, 2016: 117-122. https://doi.org/10.20858/tp.2016.11.2.11
[8] J. Svobodova, M. Lunak, M. Lattner, Analysis of the Increased Iron Content on the Corrosion Resistance of the AlSi7Mg0.3 Alloy Casting. Manufacturing Technology, 19(6), 2019: 1041-1046.
https://doi.org/10.21062/ujep/415.2019/a/1213-2489/MT/19/6/1041
[9] C. M. Dinnis, J. A. Taylor, A. K. Dahle, Interactions between iron, manganese, and the Al-Si eutectic in hypoeutectic Al-Si alloys. Metall Mater Trans, A 37, 2006: 3283-3291. https://doi.org/10.1007/BF02586163
[10] D. Song, Y. Jia, Q. Li, Y. Zhao, W. Zhang, Effect of Initial Fe Content on Microstructure and Mechanical Properties of Recycled Al-7.0SiFe-Mn Alloys with Constant Mn/Fe Ratio. Materials, 15, 2022: 1618. https://doi.org/10.3390/ma15041618
[11] A. Miteva, A. Petrova, G. Stefanov, Surface Oxidation of Al-Si Alloys at Elevated Temperatures. Applied Engineering Letters, 6(3), 2021: 105-110. https://doi.org/10.18485/aeletters.2021.6.3.3
[12] L. Kuchariková, E. Tillová, M. Samardziova, M. Uhríčik, J. Belan, I. Švecová, Quality Assessment of Al Castings Produced in Sand Molds Using Image and CT Analyses. Journal of Materials Engineering and Performance, 28, 2019: 3966-3973. https://doi.org/10.1007/s11665-019-04040-z
[13] J. A. Taylor, Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys. Procedia Materials Science, 1, 2012: 19-33. https://doi.org/10.1016/j.mspro.2012.06.004
[14] X. Cao, J. Campbell, Morphology of β-Al5FeSi Phase in Al-Si Cast Alloys. Materials Transactions, 47 (5), 2006: 1303-1312. https://doi.org/10.2320/matertrans.47.1303
[15] A. Brueckner-Foit, M. Luetje, I. Bacaicoa, A. Geisert, M. Fehlbier, On the role of internal defects in the fatigue damage process of a cast Al-Si-Cu alloy. Procedia Structural Integrity, 7, 2017: 36-43. https://doi.org/10.1016/j.prostr.2017.11.058
[16] E. R. Wang, X. D. Hui, S. S. Wang, Y. F. Zhao, G. L. Chen, Improved mechanical properties in cast Al-Si alloys by combined alloying of Fe and Cu. Materials Science and Engineering: A, 527 (29-30), 2010: 7878-7884. https://doi.org/10.1016/j.msea.2010.08.058
[17] D. Bolibruchová, R. Podprocká, R. Pastirčák, K. Major-Gabryś, The role of Mn in aluminium alloys with a higher iron content. Archives of Metallurgy and Materials, 63 (4), 2018: 1883-1888. https://doi.org/10.24425/amm.2018.125119
[18] B. Madhav, A. A. Mohiuddin, M. Atifuddin, Comparison of Mechanical Properties of AlSiMg Alloy with Varied Composition. International Journal of Engineering & Technology Research, 4 (4), 2016: 12-19.
[19] K. Bangyikhan, Effects of Oxide film, Fe-rich phase, Porosity and their Interactions on Tensile Properties of Cast Al-Si-Mg Alloys. (Ph.D. thesis). University of Birmingham, 2005.
[20] S. Seifeddine, I. L. Svensson, The influence of Fe and Mn content and cooling rate on the microstructure and mechanical properties of A380-die casting alloys. Metallurgical Science and Technology, 27 (1), 2009: 11-20.
[21] A. Bjurenstedt, S. Seifeddine, A. Jarfors, The effects of Fe-particles on the tensile properties of Al-Si-Cu alloys. Metals, 6 (12), 2016: 314. https://doi.org/10.3390/met6120314
[22] C. Puncreobutr, P. D. Lee, K. M. Kareh, T. Connolley, J. L. Fife, A. B. Phillion, Influence of Fe-rich in-termetallics on solidification defects in Al–Si–Cu alloys. Acta Materialia, 68, 2014: 42-51. https://doi.org/10.1016/j.actamat.2014.01.007
[23] L. Stanček, B. Vanko, A. I. Batyšev, Structure and properties of silumin castings solidified under pressure after heat treatment. Metal Science and Heat Treatment, 56, 2014: 197-202. https://doi.org/10.1007/s11041-014-9730-0
[24] R. Dunn, Aluminum melting problems and their influence on furnace Selection. Die Cast. Eng. 1965: 8-16.
[25] L. Ceschini, A. Morri, S. Toschi, A. Bjurenstedt, S. Seifeddine, Influence of Sludge Particles on the Fatigue Behavior of Al-Si-Cu Secondary Aluminium Casting Alloys. Metals, 8 (4), 2018: 268. https://doi.org/10.3390/met8040268

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 3
September 2024

Last Edition

Volume 9
Number 3
September 2024

How to Cite

L. Pastierovičová, L. Kuchariková, E. Tillová, M.Chalupová,  M. Bonek, The Effect of Manganese on Fe-Rich Intermetallic Phases in Progressive Secondary AlSi7Mg0.6 Alloy. Applied Engineering Letters, 7(3), 2022: 100–107. https://doi.org/10.18485/aeletters.2022.7.3.2

More Citation Formats

Pastierovičová, L., Kuchariková, L., Tillová, E., Chalupová, M., & Bonek, M. (2022). The Effect of Manganese on Fe-Rich Intermetallic Phases in Progressive Secondary AlSi7Mg0.6 Alloy. Applied Engineering Letters7(3), 100–107. https://doi.org/10.18485/aeletters.2022.7.3.2

Pastierovičová, Lucia, et al. “The Effect of Manganese on Fe-Rich Intermetallic Phases in Progressive Secondary AlSi7Mg0.6 Alloy.” Applied Engineering Letters, vol. 7, no. 3, 2022, pp. 100–7, https://doi.org/10.18485/aeletters.2022.7.3.2.

Pastierovičová, Lucia, Lenka Kuchariková, Eva Tillová, Mária Chalupová, and Miroslaw Bonek. 2022. “The Effect of Manganese on Fe-Rich Intermetallic Phases in Progressive Secondary AlSi7Mg0.6 Alloy.” Applied Engineering Letters 7 (3): 100–107. https://doi.org/10.18485/aeletters.2022.7.3.2.

Pastierovičová, L., Kuchariková, L., Tillová, E., Chalupová, M. and Bonek, M. (2022). The Effect of Manganese on Fe-Rich Intermetallic Phases in Progressive Secondary AlSi7Mg0.6 Alloy. Applied Engineering Letters, 7(3), pp.100–107.
doi: 10.18485/aeletters.2022.7.3.2.

THE EFFECT OF MANGANESE ON Fe-RICH INTERMETALLIC PHASES IN PROGRESSIVE SECONDARY AlSi7Mg0.6 ALLOY

Authors:

Lucia Pastierovičová1

, Lenka Kuchariková1
, Eva Tillová1
, Mária Chalupová1

,

Miroslaw Bonek2

1University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
2Faculty of Mechanical Engineering, Department of Materials Engineering and Biomaterials, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland

Received: 13.07.2022.
Accepted: 22.09.2022.
Available: 30.09.2022.

Abstract:

The contribution describes the major problem with the secondary (recycled) alloys as the presence of unwanted elements due to the remelting of Alscrap negatively affecting the quality of AlSi7Mg0.6 cast alloy. Iron is the most harmful impurity in the secondary Al-Si alloys, leading to the formation of β-Fe-rich (Al5FeSi) intermetallic phases that promotes forming of casting defects such as porosity and shrinkage by its needle-like shape. Suitable neutralizer alloying elements, such as Mn, influence the formation of Fe-needle-like phases and lead to the formation of less harmful Mncontaining α-Fe-rich phases. To optimize the morphology and properties of alloys, it is necessary to study the effects of individual alloying elements. Therefore, this study is focused on the effect of Mn addition on Fe-rich intermetallic phases and casting defects, thus the evaluation of its shape and distribution in AlSi7Mg0.6 secondary alloy.

Keywords:

Secondary aluminium alloy, iron content, quantitative analysis, porosity, Fe-rich phases, microstructural changes, sludge

References:

[1] Vision 2050: European Aluminium’s Contribution to the EU’s Mid-Century LowCarbon Roadmap. Available on-line on http://www.european-aluminium.eu/
[2] International Aluminium Institute. Available on-line on: https://www.lightmetalage.com/tag/international-aluminium-institute/
[3] D. Závodská, E. Tillová, I. Švecová, M. Chalupová, L. Kuchariková, J. Belan, The Effect of Iron Content on Microstructure and Porosity of Secondary AlSi7Mg0.3 Cast Alloy. Periodica Polytechnica Transportation Engineering, 47 (4), 2019: 283-289. https://doi.org/10.3311/PPtr.12101
[4] Circular Aluminium Action plan: A Strategy for Achieving Aluminiums Full Potential for Circular Economy by 2030. Available on-line on http://www.european-aluminium.eu/
[5] B. Zhou, S. Zhang, R. Lin, Y. Jiang, X. Lan, Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties. Journal of Alloys and Compounds, 879, 2021: 160407. https://doi.org/10.1016/j.jallcom.2021.160407
[6] D. Brough, H. Jouhara, The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermofluids, 1-2, 2020: 100007. https://doi.org/10.1016/j.ijft.2019.100007
[7] L. Kuchariková, E. Tillová, O. Bokůvka, Recycling and properties of recycled aluminium alloys used in the transportation industry. Transport Problems, 11, 2016: 117-122. https://doi.org/10.20858/tp.2016.11.2.11
[8] J. Svobodova, M. Lunak, M. Lattner, Analysis of the Increased Iron Content on the Corrosion Resistance of the AlSi7Mg0.3 Alloy Casting. Manufacturing Technology, 19(6), 2019: 1041-1046. https://doi.org/10.21062/ujep/415.2019/a/1213-2489/MT/19/6/1041
[9] C. M. Dinnis, J. A. Taylor, A. K. Dahle, Interactions between iron, manganese, and the Al-Si eutectic in hypoeutectic Al-Si alloys. Metall Mater Trans, A 37, 2006: 3283-3291. https://doi.org/10.1007/BF02586163
[10] D. Song, Y. Jia, Q. Li, Y. Zhao, W. Zhang, Effect of Initial Fe Content on Microstructure and Mechanical Properties of Recycled Al-7.0SiFe-Mn Alloys with Constant Mn/Fe Ratio. Materials, 15, 2022: 1618. https://doi.org/10.3390/ma15041618
[11] A. Miteva, A. Petrova, G. Stefanov, Surface Oxidation of Al-Si Alloys at Elevated Temperatures. Applied Engineering Letters, 6(3), 2021: 105-110. https://doi.org/10.18485/aeletters.2021.6.3.3
[12] L. Kuchariková, E. Tillová, M. Samardziova, M. Uhríčik, J. Belan, I. Švecová, Quality Assessment of Al Castings Produced in Sand Molds Using Image and CT Analyses. Journal of Materials Engineering and Performance, 28, 2019: 3966-3973. https://doi.org/10.1007/s11665-019-04040-z
[13] J. A. Taylor, Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys. Procedia Materials Science. 1, 2012: 19-33. https://doi.org/10.1016/j.mspro.2012.06.004
[14] X. Cao, J. Campbell, Morphology of β-Al5FeSi Phase in Al-Si Cast Alloys. Materials Transactions, 47 (5), 2006: 1303-1312. https://doi.org/10.2320/matertrans.47.1303
[15] A. Brueckner-Foit, M. Luetje, I. Bacaicoa, A. Geisert, M. Fehlbier, On the role of internal defects in the fatigue damage process of a cast Al-Si-Cu alloy. Procedia Structural Integrity, 7, 2017: 36-43. https://doi.org/10.1016/j.prostr.2017.11.058
[16] E. R. Wang, X. D. Hui, S. S. Wang, Y. F. Zhao, G. L. Chen, Improved mechanical properties in cast Al-Si alloys by combined alloying of Fe and Cu. Materials Science and Engineering: A, 527 (29-30), 2010: 7878-7884. https://doi.org/10.1016/j.msea.2010.08.058
[17] D. Bolibruchová, R. Podprocká, R. Pastirčák, K. Major-Gabryś, The role of Mn in aluminium alloys with a higher iron content. Archives of Metallurgy and Materials, 63 (4), 2018: 1883-1888. https://doi.org/10.24425/amm.2018.125119
[18] B. Madhav, A. A. Mohiuddin, M. Atifuddin, Comparison of Mechanical Properties of AlSiMg Alloy with Varied Composition. International Journal of Engineering & Technology Research, 4 (4), 2016: 12-19.
[19] K. Bangyikhan, Effects of Oxide film, Fe-rich phase, Porosity and their Interactions on Tensile Properties of Cast Al-Si-Mg Alloys. (Ph.D. thesis). University of Birmingham, 2005.
[20] S. Seifeddine, I. L. Svensson, The influence of Fe and Mn content and cooling rate on the microstructure and mechanical properties of A380-die casting alloys. Metallurgical Science and Technology, 27 (1), 2009: 11-20.
[21] A. Bjurenstedt, S. Seifeddine, A. Jarfors, The effects of Fe-particles on the tensile properties of Al-Si-Cu alloys. Metals, 6 (12), 2016: 314. https://doi.org/10.3390/met6120314
[22] C. Puncreobutr, P. D. Lee, K. M. Kareh, T. Connolley, J. L. Fife, A. B. Phillion, Influence of Fe-rich in-termetallics on solidification defects in Al–Si–Cu alloys. Acta Materialia, 68, 2014: 42-51. https://doi.org/10.1016/j.actamat.2014.01.007
[23] L. Stanček, B. Vanko, A. I. Batyšev, Structure and properties of silumin castings solidified under pressure after heat treatment. Metal Science and Heat Treatment, 56, 2014: 197-202. https://doi.org/10.1007/s11041-014-9730-0
[24] R. Dunn, Aluminum melting problems and their influence on furnace Selection. Die Cast. Eng. 1965: 8-16.
[25] L. Ceschini, A. Morri, S. Toschi, A. Bjurenstedt, S. Seifeddine, Influence of Sludge Particles on the Fatigue Behavior of Al-Si-Cu Secondary Aluminium Casting Alloys. Metals, 8 (4), 2018: 268. https://doi.org/10.3390/met8040268

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 3
September 2024

Last Edition

Volume 9
Number 3
September 2024