Journal Menu
Archive
Last Edition

STUDY OF CAVITATION EROSION PHENOMENON AT STAINLESS STEEL AISI 304 BASE AND WITH SIC COATING

Authors:

Manuel Vite-Torres1

, Marisa Moreno-Ríos2
, Arturo Villanueva-Zavala1

,

Ezequiel A. Gallardo Hernández1

, Leonardo Farfán-Cabrera3
, Dairo H. Mesa-Grajales4

1Instituto Politécnico Nacional, Grupo de Tribología, ESIME-U.ZAC, Ciudad de México, México
2Tecnológico Nacional de México, Instituto Tecnológico de Pachuca, Pachuca, Hidalgo, México
3Insitituto Tecnológico de Monterrey, Campus Puebla, Puebla, Puebla, México
4Universidad Tecnológica de Pereira, Colombia

Received: 19.10.2021.
Accepted: 02.05.2022.
Available: 30.06.2022.

Abstract:

The phenomenon of cavitation erosion consists of the formation, growth, and collapse of bubbles in liquid media. The bubbles are responsible for the damage generated to metal and non-metal materials. Consequently, there is a pronounced degradation on the material surface, producing a scar in the impact area of the bubbles, and eventually the detachment of material. This experimental work aims to determine the performance of AISI 304 stainless steel base and coated with SiC. The SiC coating was obtained by the Chemical Vapor Deposition technique assisted by plasma. The tests were done through an ultrasonic cavitometer with a frequency of 28 kHz in an aqueous medium using tap water. According to the evidence of mass loss, results indicate that the stainless steel coated with SiC have better wear resistance than stainless steel base. In addition, failure mechanisms as cracking, plastic deformation, pits and others, were identified.

Keywords:

Cavitation erosion, SiC coating, cavitometer, failure mechanisms, wear resistance

References:

[1] T. Okada, Y. Iwai, Cavitation Erosion, JSME International Journal. Series I, Solid mechanics, strength of materials, 33(2), 1990: 128-135. https://doi.org/10.1299/jsmea1988.33.2_128
[2] F.B. Peterson, Physics associated with cavitation induced material damage, The 19th meeting of the Mechanical Failures Prevention Group, 31 October and 1 and 2 November, 2014, at the National Bureau of Standards in Boulder, Colorado, USA, pp.3-12.
[3] T. van Terwisga, E. van Wijngaarden, J. Bosschers, G. Kuiper, Achievements and challenges in cavitation research on ship propellers. International Shipbuilding Progress, 54 (2-3), 2007: 165-187.
[4] R.E.A. Arndt, Some Remarks on Hydrofoil Cavitation. Journal of Hydrodynamics, 24, 2012: 305-314.
https://doi.org/10.1016/S1001-6058(11)60249-7
[5] M. Sathasivam, Dr.J. Thaarrini, N. Sarath Kumar, S.J. Sanjeykumaran, Review on cavitation analysis in pipes. International Journal of Civil Engineering and Technology, 9(10), 2018: 1231-1238.
[6] L. Xian-wu, J. Bin, T. Yoshinobu. A review of cavitation in hydraulic machinery. Journal of Hydrodynamics, 28, 2016: 335-358. https://doi:10.1016/S1001-6058(16)60638-8
[7] E. Niazi, M.J. Mahjoob, A. Bangian, Experimental and Numerical Study of Cavitation in Centrifugal Pumps, ASME 10th Biennial Conference on Engineering Systems Design and Analysis 2010, (ESDA 2010), 12-14 July, Istanbul, Turkey, pp.1-6.
[8] A. Vencl, A. Rac, Diesel engine crankshaft journal bearings failures: Case study. Engineering Failure Analysis, 44, 2014: 217-228. https://doi.org/10.1016/j.engfailanal.2014.05.014
[9] R.T. Knapp, J.W. Daily, F.G. Hammitt, Cavitation. Journal of Fluid Mechanics, 54 (1), 1970: 189-191.
https://doi.org/10.1017/S0022112072220614
[10] J. Muñoz-Cubillos, J.J. Coronado, S.A. Rodríguez, On the cavitation resistance of deep rolled surfaces of austenitic stainless steels. Wear, 428-429, 2019: 24-31. https://doi.org/10.1016/j.wear.2019.03.001
[11] E.A. Brujan, T. Ikeda, Y. Matsumoto, On the pressure of cavitation bubbles. Experimental Thermal and Fluid Science, 32 (5), 2008: 1188-1191. https://doi.org/10.1016/j.expthermflusci.2008.01.006
[12] M. Paolantonio, S. Hanke. Damage mechanisms in cavitation erosion of nitrogencontaining austenitic steels in 3.5% NaCl solution, Wear, 464-465, 2021: 203526. https://doi:10.1016/j.wear.2020.203526
[13] R. Fortes Patella, A. Archer, C. Flagel, Numerical and experimental investigations on cavitation erosion, 26th IAHR Symposium on Hydraulic Machinery and Systems 2012, 19-23 August, 2012, Beijing, China, pp.022013.
[14] S. Hattori, T. Ogiso, Y. Minami, I. Yamada, Formation and progression erosion surface for long exposure. Wear, 265 (11-12), 2008: 1619-1625. https://doi.org/10.1016/j.wear.2008.03.012
[15] K.Y. Chiu, F.T. Cheng, H.C. Man, Cavitation erosion resistance of AISI 316L stainless steel laser surface modified with NiTi. Materials Science and Engineering, A. 392 (1-2), 2005:348-358. https://doi.org/10.1016/j.msea.2004.09.035
[16] C. Haosheng, Li, Jiang, C. Darong, W. Jidao, Damages on steel surface at the incubation stage of vibration cavitation erosion in water. Wear, 265, (5-6), 2008: 692-698. https://doi.org/10.1016/j.wear.2007.12.011
[17] J.R. Laguna-Camacho, R. Lewis, M. Vite-Torres, J.V. Mendez-Mendez, A study of cavitation erosion on engineering materials. Wear, 301(1-2) 2013: 467-476. https://doi.org/10.1016/j.wear.2012.11.026
[18] H.R. Bakhshandeh, S.R. Allahkaram, A.H. Zabihi, M. Barzegar, Evaluation of synergistic effect and failure characterization for Ni-based nanostructured coatings and 17-4PH SS under cavitation exposure in 3.5 wt % NaCl solution. Wear, 466-467, 2021: 203532. https://doi.org/10.1016/j.wear.2020.203532
[19] ASTM G32 Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, 2016.
[20] M.S. Tovar Oliva, Estudio del Fenómeno de Erosión por Cavitación en Materiales Metálicos, (Master’s Thesis). Escuela Superior de Ingeniería Mecánica y Eléctrica U. Azcapotzalco, Instituto Politécnico Nacional, Ciudad de México, México, 2012.
[21] A. Villanueva Zavala, Estudio Experimental del Fenómeno de Erosión por Cavitación en Bronce, Aluminio y Acero Inoxidable cos y sin Recubrimiento de SiC (Master’s tesis). Escuela Superior de Ingeniería Mecánica y Eléctrica U. Zacatenco, Instituto Politécnico Nacional, Ciudad de México, México, 2017.
[22] V. Di Graci, M. Torres, E. Saúl Puchi, Dureza en Aceros AISI 304 Laminados en Tibio y en Caliente, X Congreso Iberoamericano de metalurgia y materiales IBEROMET 2008, 13-17 October, 2008, Cartagena de Indias, Colombia, pp.237-248.
[23] G. Bregliozzi, A. Di Schino, S.I.U Ahmed, J.M. Kenny, H. Haefke, Cavitation wear behaviour of austenitic stainless steels with different grain sizes, Wear, 258 (1-4), 2005:503-510. https://doi.org/10.1016/j.wear.2004.03.024

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 1
March 2024

Last Edition

Volume 9
Number 1
March 2024

How to Cite

M. Vite-Torres, M. Moreno-Ríos, A. Villanueva-Zavala, E.A. Gallardo-Hernández, L. Farfán-Cabrera,  D.H. Mesa-Grajales, Study of Cavitation Erosion Phenomenon at Stainless Steel AISI 304 Base and with SiC Coating. Applied Engineering Letters, 7(2), 2022: 67–73.
https://doi.org/10.18485/aeletters.2022.7.2.3

More Citation Formats

Vite-Torres, M., Moreno-Ríos, M., Villanueva-Zavala, A., Gallardo-Hernández, E. A., Farfán-Cabrera, L., & Mesa-Grajales, D. H. (2022). Study of Cavitation Erosion Phenomenon at Stainless Steel AISI 304 Base and with SiC Coating. Applied Engineering Letters7(2), 67–73. https://doi.org/10.18485/aeletters.2022.7.2.3

Vite-Torres, Manuel, et al. “Study of Cavitation Erosion Phenomenon at Stainless Steel AISI 304 Base and with SiC Coating.” Applied Engineering Letters, vol. 7, no. 2, 2022, pp. 67–73, https://doi.org/10.18485/aeletters.2022.7.2.3.

Vite-Torres, Manuel, Marisa Moreno-Ríos, Arturo Villanueva-Zavala, Ezequiel A. Gallardo-Hernández, Leonardo Farfán-Cabrera, and Dairo H. Mesa-Grajales. 2022. “Study of Cavitation Erosion Phenomenon at Stainless Steel AISI 304 Base and with SiC Coating.” Applied Engineering Letters 7 (2): 67–73. https://doi.org/10.18485/aeletters.2022.7.2.3.

Vite-Torres, M., Moreno-Ríos, M., Villanueva-Zavala, A., Gallardo-Hernández, E.A., Farfán-Cabrera, L. and Mesa-Grajales, D.H. (2022). Study of Cavitation Erosion Phenomenon at Stainless Steel AISI 304 Base and with SiC Coating. Applied Engineering Letters, 7(2), pp.67–73. doi: 10.18485/aeletters.2022.7.2.3.

STUDY OF CAVITATION EROSION PHENOMENON AT STAINLESS STEEL AISI 304 BASE AND WITH SIC COATING

Authors:

Manuel Vite-Torres1

, Marisa Moreno-Ríos2
, Arturo Villanueva-Zavala1

,

Ezequiel A. Gallardo Hernández1

, Leonardo Farfán-Cabrera3
, Dairo H. Mesa-Grajales4

1Instituto Politécnico Nacional, Grupo de Tribología, ESIME-U.ZAC, Ciudad de México, México
2Tecnológico Nacional de México, Instituto Tecnológico de Pachuca, Pachuca, Hidalgo, México
3Insitituto Tecnológico de Monterrey, Campus Puebla, Puebla, Puebla, México
4Universidad Tecnológica de Pereira, Colombia

Received: 19.10.2021.
Accepted: 02.05.2022.
Available: 30.06.2022.

Abstract:

The phenomenon of cavitation erosion consists of the formation, growth, and collapse of bubbles in liquid media. The bubbles are responsible for the damage generated to metal and non-metal materials. Consequently, there is a pronounced degradation on the material surface, producing a scar in the impact area of the bubbles, and eventually the detachment of material. This experimental work aims to determine the performance of AISI 304 stainless steel base and coated with SiC. The SiC coating was obtained by the Chemical Vapor Deposition technique assisted by plasma. The tests were done through an ultrasonic cavitometer with a frequency of 28 kHz in an aqueous medium using tap water. According to the evidence of mass loss, results indicate that the stainless steel coated with SiC have better wear resistance than stainless steel base. In addition, failure mechanisms as cracking, plastic deformation, pits and others, were identified.

Keywords:

Cavitation erosion, SiC coating, cavitometer, failure mechanisms, wear resistance

References:

[1] T. Okada, Y. Iwai, Cavitation Erosion, JSME International Journal. Series I, Solid mechanics, strength of materials, 33(2), 1990: 128-135. https://doi.org/10.1299/jsmea1988.33.2_128
[2] F.B. Peterson, Physics associated with cavitation induced material damage, The 19th meeting of the Mechanical Failures Prevention Group, 31 October and 1 and 2 November, 2014, at the National Bureau of Standards in Boulder, Colorado, USA, pp.3-12.
[3] T. van Terwisga, E. van Wijngaarden, J. Bosschers, G. Kuiper, Achievements and challenges in cavitation research on ship propellers. International Shipbuilding Progress, 54 (2-3), 2007: 165-187.
[4] R.E.A. Arndt, Some Remarks on Hydrofoil Cavitation. Journal of Hydrodynamics, 24, 2012: 305-314. https://doi.org/10.1016/S1001-6058(11)60249-7
[5] M. Sathasivam, Dr.J. Thaarrini, N. Sarath Kumar, S.J. Sanjeykumaran, Review on cavitation analysis in pipes. International Journal of Civil Engineering and Technology, 9(10), 2018: 1231-1238.
[6] L. Xian-wu, J. Bin, T. Yoshinobu. A review of cavitation in hydraulic machinery. Journal of Hydrodynamics, 28, 2016: 335-358. https://doi:10.1016/S1001-6058(16)60638-8
[7] E. Niazi, M.J. Mahjoob, A. Bangian, Experimental and Numerical Study of Cavitation in Centrifugal Pumps, ASME 10th Biennial Conference on Engineering Systems Design and Analysis 2010, (ESDA 2010), 12-14 July, Istanbul, Turkey, pp.1-6.
[8] A. Vencl, A. Rac, Diesel engine crankshaft journal bearings failures: Case study. Engineering Failure Analysis, 44, 2014: 217-228. https://doi.org/10.1016/j.engfailanal.2014.05.014
[9] R.T. Knapp, J.W. Daily, F.G. Hammitt, Cavitation. Journal of Fluid Mechanics, 54 (1), 1970: 189-191. https://doi.org/10.1017/S0022112072220614
[10] J. Muñoz-Cubillos, J.J. Coronado, S.A. Rodríguez, On the cavitation resistance of deep rolled surfaces of austenitic stainless steels. Wear, 428-429, 2019: 24-31. https://doi.org/10.1016/j.wear.2019.03.001
[11] E.A. Brujan, T. Ikeda, Y. Matsumoto, On the pressure of cavitation bubbles. Experimental Thermal and Fluid Science, 32 (5), 2008: 1188-1191. https://doi.org/10.1016/j.expthermflusci.2008.01.006
[12] M. Paolantonio, S. Hanke. Damage mechanisms in cavitation erosion of nitrogencontaining austenitic steels in 3.5% NaCl solution, Wear, 464-465, 2021: 203526. https://doi:10.1016/j.wear.2020.203526
[13] R. Fortes Patella, A. Archer, C. Flagel, Numerical and experimental investigations on cavitation erosion, 26th IAHR Symposium on Hydraulic Machinery and Systems 2012, 19-23 August, 2012, Beijing, China, pp.022013.
[14] S. Hattori, T. Ogiso, Y. Minami, I. Yamada, Formation and progression erosion surface for long exposure. Wear, 265 (11-12), 2008: 1619-1625. https://doi.org/10.1016/j.wear.2008.03.012
[15] K.Y. Chiu, F.T. Cheng, H.C. Man, Cavitation erosion resistance of AISI 316L stainless steel laser surface modified with NiTi. Materials Science and Engineering, A. 392 (1-2), 2005:348-358. https://doi.org/10.1016/j.msea.2004.09.035
[16] C. Haosheng, Li, Jiang, C. Darong, W. Jidao, Damages on steel surface at the incubation stage of vibration cavitation erosion in water. Wear, 265, (5-6), 2008: 692-698. https://doi.org/10.1016/j.wear.2007.12.011
[17] J.R. Laguna-Camacho, R. Lewis, M. Vite-Torres, J.V. Mendez-Mendez, A study of cavitation erosion on engineering materials. Wear, 301(1-2) 2013: 467-476. https://doi.org/10.1016/j.wear.2012.11.026
[18] H.R. Bakhshandeh, S.R. Allahkaram, A.H. Zabihi, M. Barzegar, Evaluation of synergistic effect and failure characterization for Ni-based nanostructured coatings and 17-4PH SS under cavitation exposure in 3.5 wt % NaCl solution. Wear, 466-467, 2021: 203532. https://doi.org/10.1016/j.wear.2020.203532
[19] ASTM G32 Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, 2016.
[20] M.S. Tovar Oliva, Estudio del Fenómeno de Erosión por Cavitación en Materiales Metálicos, (Master’s Thesis). Escuela Superior de Ingeniería Mecánica y Eléctrica U. Azcapotzalco, Instituto Politécnico Nacional, Ciudad de México, México, 2012.
[21] A. Villanueva Zavala, Estudio Experimental del Fenómeno de Erosión por Cavitación en Bronce, Aluminio y Acero Inoxidable cos y sin Recubrimiento de SiC (Master’s tesis). Escuela Superior de Ingeniería Mecánica y Eléctrica U. Zacatenco, Instituto Politécnico Nacional, Ciudad de México, México, 2017.
[22] V. Di Graci, M. Torres, E. Saúl Puchi, Dureza en Aceros AISI 304 Laminados en Tibio y en Caliente, X Congreso Iberoamericano de metalurgia y materiales IBEROMET 2008, 13-17 October, 2008, Cartagena de Indias, Colombia, pp.237-248.
[23] G. Bregliozzi, A. Di Schino, S.I.U Ahmed, J.M. Kenny, H. Haefke, Cavitation wear behaviour of austenitic stainless steels with different grain sizes, Wear, 258 (1-4), 2005:503-510. https://doi.org/10.1016/j.wear.2004.03.024

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 1
March 2024

Last Edition

Volume 9
Number 1
March 2024