Journal Menu
Archive
Last Edition

WIND ENERGY CONVERSION SYSTEM USING MAXIMUM POWER POINT TRACKING TECHNIQUE – A COMPREHENSIVE SURVEY

Authors:

Mohsin Ali Koondhar1

, Majid Ali2, Muhammad Usman Keerio1

Abdul Khalique Junejo1, Imtiaz Ali Laghari3, Sadullah Chandio1

1Department of Electrical Engineering, Quaid‐e‐Awam University of Engineering, Science and Technology Nawabshah, Sindh Pakistan
2Member IEEE Department of Electrical Engineering, The University of Lahore, Pakistan
3Department of Electrical Engineering, Quaid‐e‐Awam University of Engineering, Science and Technology Larkana Campus, Sindh Pakistan

Received: 16.08.2021.
Accepted: 06.09.2021.
Available: 31.12.2021.

Abstract:

Over the past decade, wind power generation (WPG) has focused on energy generation, and much research is being done on renewable energy (RE), especially wind energy (WE). WE guarantee environmentally friendly power generation and help to meet national energy needs due to the declining trend of renewable resources. In this article, various Maximum Power Point Tracking (MPPT) techniques proposed for wind energy conversion system (WECS) modeling control management strategies and efficient wind power generation (WPG) from available sources have been discussed. In addition, a comparative survey of various familiar soft methods is accorded for an easy power system with the wind. At last, a cost‐effective investigation arrived for MPPT techniques found on (a) Saving of energy, (b) period of profit, (c) generated income, (d) cost, (e) capacity utilization aspect, and (f) solidity.

Keywords:

Wind Turbine, Wind Energy, WECS, MPPT, Renewable Energy, PMSG

References:

[1] M.A. Koondhar, M.I. Jamali, A.S. Channa, I.A. Laghari, Partial Shading Effect on the Performance of PV Panel and its Different Circuit Topologies Based Mitigation Techniques: A Review. International Journal of Advanced Research in Engineering and Technology, 12 (4), 2021: 15‐23.
https://doi.org/10.34218/IJARET.12.4.2021.003
[2] S.R. Bull, Renewable energy today and tomorrow. Proceedings of the IEEE, 89 (8), 2001: 1216‐1226. https://doi.org/10.1109/5.940290
[3] Z. Haoran, B. Kaiming, H. Hong, A state‐of‐ the‐art review on the vibration mitigation of wind turbines. Renewable and Sustainable Energy Reviews, 121, 2020: 109710. https://doi.org/10.1016/j.rser.2020.109710
[4] A.M. Update, Global wind report. Global Wind Energy Council, 2017.
[5] M.A. Abdullah, A.H. Yatim, C.W. Tan, R. Saidur, A review of maximum power point tracking algorithms for wind energy systems. Renewable and sustainable energy reviews, 16 (5), 2012: 3220‐3227.
https://doi.org/10.1016/j.rser.2012.02.016
[6] M.A. Abdullah, A.H. Yatim, C.W. Tan, A study of maximum power point tracking algorithms for wind energy system. In IEEE Conference on Clean Energy and Technology (CET), 2011: 321‐326.
https://doi.org/10.1109/CET.2011.6041484
[7] R. Saidur, M.R. Islam, N.A. Rahim, K.H. Solangi, A review on global wind energy policy. Renewable and sustainable energy reviews, 14 (7), 2010: 1744‐1762. https://doi.org/10.1016/j.rser.2010.03.007
[8] D. Lamsal, V. Sreeram, Y. Mishra, D. Kumar, Output power smoothing control approaches for wind and photovoltaic generation systems: A review. Renewable and Sustainable Energy Reviews, 113, 2019: 109245. https://doi.org/10.1016/j.rser.2019.109245
[9] M.A. Chowdhury, N. Hosseinzadeh, W.X. Shen, Smoothing wind power fluctuations by fuzzy logic pitch angle controller. Renewable Energy, 38 (1), 2012: 224‐233. https://doi.org/10.1016/j.renene.2011.07.034
[10] R.M. Kamel, A. Chaouachi, K. Nagasaka, RETRACTED: Wind power smoothing using fuzzy logic pitch controller and energy capacitor system for improvement micro ‐ grid performance in islanding mode. Energy, 35, 2010: 2119‐2129. https://doi.org/10.1016/j.energy.2010.01.030
[11] M. Dreidy, H. Mokhlis, S. Mekhilef, Inertia response and frequency control techniques for renewable energy sources: A review. Renewable and sustainable energy reviews, 69, 2017: 144‐155.
http://dx.doi.org/10.1016/j.rser.2016.11.170
[12] J. Dong, G. Xue, M. Dong, X. Xu, Energy‐ saving power generation dispatching in China: Regulations, pilot projects and policy recommendations ‐ A review. Renewable and Sustainable Energy Reviews, 43, 2015: 1285‐1300. https://doi.org/10.1016/j.rser.2014.11.037
[13] R. Saidur, N.A. Rahim, M.R. Islam, K.H. Solangi, Environmental impact of wind energy. Renewable and sustainable energy review, 15 (5), 2011: 2423‐2430. https://doi.org/10.1016/j.rser.2011.02.024
[14] C. Breidenich, D. Magraw, A. Rowley, J.W. Rubin, The Kyoto protocol to the United Nations framework convention on climate change. American Journal of International Law, 92 (2), 1998: 315‐331.
[15] D. Lashof, S. Yeh, S. Carter, D. Doniger, D. Murrow, L. Johnson, Cleaner and cheaper: Using the clean air act to sharply reduce carbon pollution from existing power plants, delivering health, environmental, and economic benefits. Natural Resources Defence Council (NRDC), 2014: 1‐12.
[16] Global Status Report, REN21 Secretariat, Paris, France. InTech. Rep, 2017: 91‐93.
[17] L. Lu, H. Yang, J. Burnett, Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics. Renewable Energy, 27 (1), 2002: 1‐12.
https://doi.org/10.1016/S0960‐1481(01)00164‐1
[18] M.A. Elhadidy, S.M. Shaahid, Parametric study of hybrid (wind+ solar+ diesel) power generating systems. Renewable energy, 21(2), 2000: 129‐139. https://doi.org/10.1016/S0960‐1481(00)00040‐9
[19] E. Koutroulis, K. Kalaitzakis, Design of a maximum power tracking system for wind‐ energy‐conversion applications. IEEE transactions on industrial electronics UK, 53(2), April 3, 2006, 486‐494.
https://doi.org/10.1109/TIE.2006.870658
[20] L.L. Freris, Wind Energy Conversion Systems. Englewood Cliffs, NJ: Prentice‐Hall, 1990; 182‐184.
[21] V. Valtchev, A. Van den Bossche, J. Ghijselen, J. Melkebeek, Autonomous renewable energy conversion system. Renewable energy, 19 (1‐2), 2000: 259‐275. https://doi.org/10.1016/S0960‐1481(99)00040‐3
[22] E. Muljadi, C.P. Butterfield. Pitch‐controlled variable‐speed wind turbine generation. IEEE transactions on Industry Applications USA, 37 (1), January 2, 2001, 240‐246. https://doi.org/10.1109/28.903156
[23] A.M. De Broe, S. Drouilhet, V. Gevorgian, A peak power tracker for small wind turbines in battery charging applications. IEEE Transactions on energy conversion Italy, 14 (4), December 5, 1999, 1630‐1635. https://doi.org/10.1109/60.815116
[24] R.M. Hilloowala, A.M. Sharaf, A rule‐based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme. IEEE Transactions on Industry Applications USA, 32 (1), 1996: 57‐65.
https://doi.org/10.1109/28.485813
[25] N. Mohan, T.M. Undeland, W.P. Robbins, Power electronics: converters, applications, and design. John wiley & sons, 2003.
[26] Z. Chen, E. Spooner, Grid power quality with variable speed wind turbines. IEEE Transactions on energy conversion, 16 (2), 2001: 148‐154. https://doi.org/10.1109/60.921466
[27] E. Spooner, A.C. Williamson, G. Catto, Modular design of permanent‐magnet generators for wind turbines. IEEE Proceedings‐Electric Power Applications, 143 (5), 1996: 388‐395.
[28] Z. Chen, and E. Spooner, A modular, permanent‐magnet generator for variable speed wind turbines. Seventh International Conference on Electrical Machines and Drives, September 11‐13, 1995, Durham, UK, 453‐457. https://doi.org/10.1049/cp:19950913
[29] Z. Chen, E. Spooner, Grid interface for renewable energy sources. In 2nd International Power electronics and motion control conference, November 3‐6, 1997, Hangzhou, China, 256‐261.
[30] Z. Chen, E. Spooner, Grid interface options for variable‐speed, permanent‐magnet generators. IEEE Proceedings‐Electric Power Applications, 145 (4), 1998, 273‐283. https://doi.org/10.1049/ip‐epa:19981981
[31] P.W. Carlin, A.S. Laxson, E.B. Muljadi, The history and state of the art of variable‐speed wind turbine technology. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 6 (2), 2003: 129‐159. https://doi.org/10.1002/we.77
[32] A. Uehara, A. Pratap, T. Goya, T. Senjyu, A. Yona, N. Urasaki, T. Funabashi, A coordinated control method to smooth wind power fluctuations of a PMSG‐based WECS. IEEE Transactions on energy conversion, 26 (2), 2011: 550‐558. https://doi.org/10.1109/TEC.2011.2107912
[33] H.W. Kim, S.S. Kim, H.S. Ko, Modeling and control of PMSG‐based variable‐speed wind turbine. Electric Power Systems Research, 80 (1), 2010: 46‐52. https://doi.org/10.1016/j.epsr.2009.08.003
[34] M. Rahimi, M. Parniani, Coordinated control approaches for low‐voltage ride‐through enhancement in wind turbines with doubly fed induction generators. IEEE Transactions on Energy Conversion, 25 (3), 2010: 873‐883. https://doi.org/10.1109/TEC.2010.2050485
[35] E.B. Muhando, T. Senjyu, A. Uehara, T. Funabashi, Gain‐scheduled H∞ control for WECS via LMI techniques and parametrically dependent feedback part I: model development fundamentals. IEEE Transaction on Industrial Electronics, 58 (1), 2011: 48‐56. https://doi.org/10.1109/TIE.2010.2045317
[36] M. Hussain, M.H. Baloch, A.H. Memon, N.K. Pathan, Maximum power tracking system based on power electronic topology for wind energy conversion system applications. Engineering, Technology & Applied Science Research, 8 (5), 2018: 3392‐3397. https://doi.org/10.48084/etasr.2251
[37] C.P. Van Dam, D.E. Berg, S.J. Johnson, Active load control techniques for wind turbines. Sandia National Laboratories, 2008.
[38] S.P. LakshmanRao, C.P. Kurian, B.K. Singh, V.A. Jyothi, Simulation and control of DC/DC converter for MPPT based hybrid PV/Wind power system. International journal of renewable energy research, 4 (3), 2014: 801‐809.
[39] S.S. Mali, B.E. Kushare, MPPT algorithms: Extracting maximum power from wind turbines. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 1 (5), 2013: 199‐202.
[40] W.M. Lin, C.M. Hong, F.S. Cheng, Fuzzy neural network output maximization control for sensorless wind energy conversion system. Energy, 35 (2), 2010: 592‐601. https://doi.org/10.1016/j.energy.2009.10.030
[41] A.G. Abo‐Khalil, D.C. Lee, MPPT control of wind generation systems based on estimated wind speed using SVR. IEEE transactions on Industrial Electronics, 55 (3), 2008: 1489‐1490.
https://doi.org/10.1109/TIE.2007.907672
[42] M. Ragheb, A.M. Ragheb. Wind turbines theory the betz equation and optimal rotor tip speed ratio. Fundamental and advanced topics in wind power, 1 (1), 2011: 19‐38. https://doi.org/10.5772/21398
[43] S. Morimoto, H. Nakayama, M. Sanada, Y. Takeda, Sensorless output maximization control for variable‐speed wind generation system using IPMSG. IEEE Transactions on industry applications, 41 (1), 2005: 60‐67.
https://doi.org/10.1109/TIA.2004.841159
[44] M. Kesraoui, N. Korichi, A. Belkadi, Maximum power point tracker of wind energy conversion system. Renewable energy, 36 (10), 2011: 2655‐2662. https://doi.org/10.1016/j.renene.2010.04.028
[45] M. Pucci, M. Cirrincione, Neural MPPT control of wind generators with induction machines without speed sensors. IEEE Transactions on Industrial Electronics, 58 (1), 2010: 37‐47.
https://doi.org/10.1109/TIE.2010.2043043
[46] S.M. Kazmi, H. Goto, H.J. Guo, O. Ichinokura, A novel algorithm for fast and efficient speed‐sensorless maximum power point tracking in wind energy conversion systems. IEEE transactions on industrial electronics, 58 (1), 2010: 29‐36. https://doi.org/10.1109/TIE.2010.2044732
[47] M. Kesraoui, N. Korichi, A. Belkadi, Maximum power point tracker of wind energy conversion system. Renewable energy, 36 (10), 2011: 2655‐2662. https://doi.org/10.1016/j.renene.2010.04.028
[48] H.H. Mousa, A.R. Youssef, E.E. Mohamed, State of the art perturb and observe MPPT algorithms based wind energy conversion systems: A technology review. International Journal of Electrical Power & Energy Systems, 126, 2021: 106598. https://doi.org/10.1016/j.ijepes.2020.106598
[49] D. Kumar, K. Chatterjee, A review of conventional and advanced MPPT algorithms for wind energy systems. Renewable and sustainable energy reviews, 55, 2016: 957‐ 970.
http://dx.doi.org/10.1016/j.rser.2015.11.013
[50] V. Galdi, A. Piccolo, P. Siano, Designing an adaptive fuzzy controller for maximum wind energy extraction. IEEE Transactions on Energy Conversion, 23 (2), 2008: 559‐569.
http://dx.doi.org/10.1109/TEC.2007.914164
[51] J. Hui, A. Bakhshai, P.K. Jain, An adaptive approximation method for maximum power point tracking (MPPT) in wind energy systems. In 2011 IEEE Energy Conversion Congress and Exposition, September 17‐22, 2011, Phoenix, AZ, USA, 2664‐2669. http://dx.doi.org/10.1109/ECCE.2011.6064125
[52] C. Viveiros, R. Melício, J.M. Igreja, V.M.F. Mendes, Supervisory control of a variable speed wind turbine with doubly fed induction generator. Energy Rep, 1, 2015, 89‐95. https://doi.org/10.1016/j.egyr.2015.03.001
[53] B. Neammanee, K. Krajangpan, S. Sirisumrannukul, S. Chatratana, Maximum peak power tracking‐based control algorithms with stall regulation for optimal wind energy capture. IEEE Power Conversion Conference Nagoya, Japan, 128 (4), 2007: 411‐417. https://doi.org/10.1109/PCCON.2007.373151
[54] S. M. Tripathi, A. N. Tiwari, D. Singh, Grid‐ integrated permanent magnet synchronous generator based wind energy conversion systems: A technology review. Renewable and Sustainable Energy Reviews, 51, 2015: 1288‐1305. https://doi.org/10.1016/j.rser.2015.06.060
[55] S. Musunuri, H.L. Ginn, Comprehensive review of wind energy maximum power extraction algorithms. In IEEE power and energy society general meeting, July 24‐28, 2011, Detroit, MI, USA, 1‐8.
https://doi.org/10.1109/PES.2011.6039023
[56] R. Tiwari, N.R. Babu, Recent developments of control strategies for wind energy conversion system. Renewable and Sustainable Energy Reviews, 66, 2016: 268‐ 285. https://doi.org/10.1016/j.rser.2016.08.005
[57] H. Fathabadi, Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single‐sensor‐based maximum power point tracking technique. Energy, 113, 2016: 1219‐1230. https://doi.org/10.1016/j.energy.2016.07.081
[58] K. N. Yu, C. K. Liao, Applying novel fractional order incremental conductance algorithm to design and study the maximum power tracking of small wind power systems. Journal of applied research and technology, 13 (2), 2015: 238‐244.
[59] Z. M. Dalala, Z. U. Zahid, W. Yu, Y. Cho, Y., J. S. Lai, Design and analysis of an MPPT technique for small‐scale wind energy conversion systems. IEEE transactions on energy conversion, 28 (3), 2013: 756‐767.
https://doi.org/10.1109/TEC.2013.2259627
[60] A. Harrag, S. Messalti, Variable step size modified P&O MPPT algorithm using GA‐ based hybrid offline/online PID controller. Renewable and Sustainable Energy Reviews, 49, 2015: 1247‐1260.
https://doi.org/10.1016/j.rser.2015.05.003

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 3
September 2025

Loading

Last Edition

Volume 10
Number 3
September 2025

How to Cite

M.A. Koondhar,  M. Ali,  M.U. Keerio, A.K. Junejo, I.A. Laghari, S. Chandio, Wind Energy Conversion System Using Maximum Power Point Tracking Technique — A Comprehensive Survey. Applied Engineering Letters, 6(4), 2021: 148–156.
https://doi.org/10.18485/aeletters.2021.6.4.2

More Citation Formats

Koondhar, M. A., Ali, M., Keerio, M. U., Junejo, A. K., Laghari, I. A., & Chandio, S. (2021). Wind Energy Conversion System Using Maximum Power Point Tracking Technique — A Comprehensive Survey. Applied Engineering Letters6(4), 148–156.
https://doi.org/10.18485/aeletters.2021.6.4.2

Koondhar, Mohsin Ali, et al. “Wind Energy Conversion System Using Maximum Power Point Tracking Technique — a Comprehensive Survey.” Applied Engineering Letters, vol. 6, no. 4, 2021, pp. 148–56,
https://doi.org/10.18485/aeletters.2021.6.4.2.

Koondhar, Mohsin Ali, Majid Ali, Muhammad Usman Keerio, Abdul Khalique Junejo, Imtiaz Ali Laghari, and Sadullah Chandio. 2021. “Wind Energy Conversion System Using Maximum Power Point Tracking Technique — a Comprehensive Survey.” Applied Engineering Letters 6 (4): 148–56. https://doi.org/10.18485/aeletters.2021.6.4.2.

Koondhar, M.A., Ali, M., Keerio, M.U., Junejo, A.K., Laghari, I.A. and Chandio, S. (2021). Wind Energy Conversion System Using Maximum Power Point Tracking Technique — A Comprehensive Survey. Applied Engineering Letters, 6(4), pp.148–156. doi: 10.18485/aeletters.2021.6.4.2.

WIND ENERGY CONVERSION SYSTEM USING MAXIMUM POWER POINT TRACKING TECHNIQUE – A COMPREHENSIVE SURVEY

Authors:

Mohsin Ali Koondhar1

, Majid Ali2, Muhammad Usman Keerio1

Abdul Khalique Junejo1, Imtiaz Ali Laghari3, Sadullah Chandio1

1Department of Electrical Engineering, Quaid‐e‐Awam University of Engineering, Science and Technology Nawabshah, Sindh Pakistan
2Member IEEE Department of Electrical Engineering, The University of Lahore, Pakistan
3Department of Electrical Engineering, Quaid‐e‐Awam University of Engineering, Science and Technology Larkana Campus, Sindh Pakistan

Received: 16.08.2021.
Accepted: 06.09.2021.
Available: 31.12.2021.

Abstract:

Over the past decade, wind power generation (WPG) has focused on energy generation, and much research is being done on renewable energy (RE), especially wind energy (WE). WE guarantee environmentally friendly power generation and help to meet national energy needs due to the declining trend of renewable resources. In this article, various Maximum Power Point Tracking (MPPT) techniques proposed for wind energy conversion system (WECS) modeling control management strategies and efficient wind power generation (WPG) from available sources have been discussed. In addition, a comparative survey of various familiar soft methods is accorded for an easy power system with the wind. At last, a cost‐effective investigation arrived for MPPT techniques found on (a) Saving of energy, (b) period of profit, (c) generated income, (d) cost, (e) capacity utilization aspect, and (f) solidity.

Keywords:

Wind Turbine, Wind Energy, WECS, MPPT, Renewable Energy, PMSG

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 3
September 2025

Loading

Last Edition

Volume 10
Number 3
September 2025