Journal Menu
Archive
Last Edition

TECHNO-ECONOMIC ASSESSMENT FOR INSTALLATION OF INVELOX WIND TURBINES IN NORTHERN IRAN

Authors:

Pooya Taheri1

, Mohammad Javad Taheri2

1Mechatronic Systems Engineering Department, Simon Fraser University, Canada
2Niroo Consulting Engineers, Tehran, Iran

Received: 28.08.2021.
Accepted: 08.10.2021.
Available: 31.12.2021.

Abstract:

This paper aims to provide a comprehensive feasibility study for the installation of a 100 MW wind power plant using the INVELOX system in Manjil, Gilan, in Northern Iran. In the first part of the paper, we provide a review of the status of wind energy installation in Iran. We then review the mathematical equations involved in wind power calculations. Afterwards, with the environmental data gathered from the corresponding authorities and open‐access sources, we analyzed the INVELOX system with its benefits and drawbacks. Then, based on the derived mathematical formulations, and using simulation software packages, the average wind power density is calculated, and the turbine system is designed accordingly. Finally, the economic profitability of this project was examined using a mathematical economic analysis and the COMFAR software package. In addition to the detailed feasibility study of this specific project, this article aims to provide a comprehensive literature review of the INVELOX system.

Keywords:

Economic analysis, Feasibility study, Fluid dynamic, INVELOX wind turbine, Wind energy

References:

[1] L. Ding, Study of INVELOX wind turbine considering atmospheric boundary layer: Based on numerical simulation. Journal of Physics: Conference Series, 1600, 2020: 1‐6. https://doi.org/10.1088/1742‐6596/1600/1/012063
[2] M. Anbarsooz, M. Amiri, I. Rashidi, A novel curtain design to enhance the aerodynamic performance of INVELOX: A Steady‐RANS numerical simulation. Energy, 168, 2019: 207‐ 221. https://doi.org/10.1016/j.energy.2018.11.122
[3] O. Saadatian, L. C. Haw, K. Sopian, M. Y. Sulaiman, Review of windcatcher technologies. Renewable and Sustainable Energy Reviews, 16(3), 2012: 1477‐1495. https://doi.org/10.1016/j.rser.2011.11.037
[4] F. Jomehzadeh, P. Nejati, J. K. Calautit, M. B. Mohd Yusof, S. A. Zaki, B. R., Hughes, M. N. A. W. M. Yazid, A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment. Renewable and Sustainable Energy Reviews, 70, 2017: 736‐ 756. https://doi.org/10.1016/j.rser.2016.11.254
[5] A. El‐Shorbagy, Design with nature: windcatcher as a paradigm of natural ventilation device in buildings. International Journal of Civil & Environmental Engineering (IJCEE‐IJENS), 10(3), 2010: 26‐31.
[6] Ministry of Energy Renewable Energy and Energy Efficiency Organization, Online: http://www.satba.gov.ir/en/aboutsatba/ener gystrategicplanning, (Accessed: 29.04.2021).
[7] T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, Wind energy handbook, Second Ed., John Wiley & Sons, May 2011. https://doi.org/10.1002/9781119992714
[8] S. Moshiri, S. Lechtenböhmer, Sustainable energy strategy for Iran, Wuppertal Spezial, 51, Wuppertal Institut für Klima, 2015.
[9] Wind Report 2021, Online: https://gwec.net/global‐wind‐report‐2021/, (Accessed: 29.04.2021).
[10] M. Aien, O. Mahdavi, On the way of policy making to reduce the reliance of fossil fuels: Case study of Iran. Sustainability, 12(24), 2020. https://doi.org/10.3390/su122410606
[11] The Wind Power, Online: https://www.thewindpower.net/country‐datasheet‐38‐iran.php, (Accessed: 29.04.2021).
[12] Naft Online News Agency, Online: https://www.naftonline.ir/, (Accessed: 29.04.2021).
[13] A. A. Sayed, M. Z. Ibn Sadiq, Q. N. Rudaba, S. Khondokar, A. H. S. Shatil, Generating electricity on roadside using INVELOX, 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Oct. 2018, New Delhi, India, pp.1132‐1135. https://doi.org/10.1109/icpeices.2018.8897314
[14] A. Mostafaeipour, H. Abarghooei, Harnessing wind energy at Manjil area located in north of Iran. Renewable and Sustainable Energy Reviews, 12(6), 2008: 1758‐1766. https://doi.org/10.1016/j.rser.2007.01.029
[15] D. Allaei, D. Tarnowski, Y. Andreopoulos, INVELOX with multiple wind turbine generator systems. Energy, 93(1), 2015: 1030‐1040. https://doi.org/10.1016/j.energy.2015.09.076
[16] A. Betz, Introduction to the Theory of Flow Machines. Oxford: Pergamon Press, 1966. https://doi.org/10.1016/c2013‐0‐05426‐6
[17] A. Mostafaeipour, A. Sedaghat, A. A. Dehghan‐ Niri, V. Kalantar, Wind energy feasibility study for Shahrbabak in Iran. Renewable and Sustainable Energy Reviews, 15(6), 2011: 2545‐2556. https://doi.org/10.1016/j.rser.2011.02.030
[18] A. K. Azad, M. G. Rasul, T. Yusuf, Statistical diagnosis of the best Weibull methods for wind power distribution function for agricultural applications. Energies, 7(5), 2014: 3056‐3085. https://doi.org/10.3390/en7053056
[19] P. K. Chaurasiya, S. Ahmed, V. Warudkar, Study of different parameters estimation methods of Weibull distribution to determine wind power density using ground based Doppler SODAR instrument. Alexandria Engineering Journal, 57(4), 2018: 2299‐2311. https://doi.org/10.1016/j.aej.2017.08.008
[20] B. K. Saxena, K. V. S. Rao, Estimation of wind power density at a wind farm site located in western Rajasthan region of India. Procedia Technology, 24, 2016: 492‐498. https://doi.org/10.1016/j.protcy.2016.05.084
[21] K. Mohammadi, A. Mostafaeipour, A. Sedaghat, S. Shamshirband, D. Petković, Application and economic viability of wind turbine installation in Lutak, Iran. Environmental Earth Science, 75(3), 2016. https://doi.org/10.1007/s12665‐015‐5054‐7
[22] D. B. de Alencar, C. de Mattos Affonso, R. C. L. de Oliveira, J. L. M. Rodriguez, J. C. Leite, J. C. R. Filho, Different methods for forecasting wind power generation: Case study. Energies, 10(12), 2017. https://doi.org/10.3390/en10121976
[23] K. Mohammadi, A. Mostafaeipour, Using different methods for comprehensive study of wind turbine utilization in Zarrineh, Iran. Energy Conversion and Management, 65, 2013: 463‐470. https://doi.org/10.1016/j.enconman.2012.09.004
[24] K. Mohammadi, A. Mostafaeipour, Y. Dinpashoh, N. Pouya, Electricity generation and energy cost estimation of large‐scale wind turbines in Jarandagh, Iran. Journal of Energy, 2014. https://doi.org/10.1155/2014/613681
[25] X. Yu, H. Qu, Wind power in China ‐ Opportunity goes with challenge. Renewable and Sustainable Energy Reviews, 14(8), 2010: 2232‐2237. https://doi.org/10.1016/j.rser.2010.03.038
[26] S. Samadianfard, S. Hashemi, K. Kargar, M. Izadyar, A. Mostafaeipour, A. Mosavi, N. Nabipour, S. Shamshirban, Wind speed prediction using a hybrid model of the multi‐ layer perceptron and whale optimization algorithm. Energy Reports, 6, 2020: 1147‐1159. https://doi.org/10.1016/j.egyr.2020.05.001
[27] World Weather Online, Online: https://www.worldweatheronline.com/manjil‐weather‐averages/gilan/ir.aspx, (Accessed: 29.04.2021).
[28] Global Wind Info, Online: https://globalwindatlas.info/, (Accessed: 29.04.2021).
[29] Windy App, https://windy.app/forecast2/spot/459382/Manjil/statistics, (Accessed: 29.04.2021).
[30] A. Ashrafzadeh, O. Kişi, P. Aghelpour, S. M. Biazar, M. A. Masouleh, Comparative study of time series models, support vector machines, and GMDH in forecasting long‐term evapotranspiration rates in Northern Iran. Journal of Irrigation and Drainage Engineering, 146(6), 2020. https://doi.org/10.1061/(asce)ir.1943‐4774.0001471
[31] F. Roudi, P. Azadi, M. Mesgaran, Iran’s population dynamics and demographic window of opportunity, Stanford Iran 2040 Project. Stanford University, April 2017.
[32] Iranian power system, CIGRÉ report, 2018. https://www.cigre.org/userfiles/files/Community/NC/2018_National‐power‐system_Iran.pdf, (Accesses: 29.04.2021)
[33] M. Meratizaman, M. Nateqi, Feasibility study of new generation of wind turbine (INVELOX), is it competitive with the Conventional Horizontal Axis Wind Turbine?. Energy, 217, 2021. https://doi.org/10.1016/j.energy.2020.119350
[34] N. Nikandish, H. A. Ghamsari, An investigation of Manjil wind changes and its effect on sustainable development of the region. Geography and Development, 18(59), 2020.
[35] A. Genc, M. Erisoglu, A. Pekgor, G. Oturanc, A. Hepbasil, K. Ulgen, Estimation of wind power potential using Weibull distribution. Energy Sources, 27(9), 2005: 809‐822. https://doi.org/10.1080/00908310490450647
[36] I. Ackah, E. Graham, Meeting the targets of the Paris Agreement: an analysis of Renewable Energy (RE) governance systems in West Africa (WA), Clean Technologies and Environmental Policy, 23(2), 2021: 501–507.
https://doi.org/10.1007/s10098‐020‐01960‐6
[37] M. Shaterabadi, M. Ahmadi Jirdehi, Multi‐ objective stochastic programming energy management for integrated INVELOX turbines in microgrids: A new type of turbines. Renewable Energy, 145, 2020: 2754‐2769.
https://doi.org/10.1016/j.renene.2019.08.002
[38] M. Jithim, R. N. Hegde, Innovative wind energy generation by INVELOX, 4th IRF International Conference, Apr. 2015, Cochin, India.
[39] D. Allaei, Y. Andreopoulos, INVELOX: Description of a new concept in wind power and its performance evaluation. Energy, 69, 2014: 336‐344. https://doi.org/10.1016/j.energy.2014.03.021
[40] S. Hanna, Introducing INVELOX technology to generate energy using wind and wind turbines by retrofitting traditional wind turbines, M.Sc. Thesis. California State University, Sacramento, US, 2019.
[41] P. Raeisi Mahdi Abadi, S. Vahdati Daneshmand, R. Sharifi, Development and economical evaluation for wind power plant in Chabahar in Sistan and Baluchestan province‐Iran. Journal of Renewable Energy and Environment, 3(1), 2015: 17‐24.
[42] M. Ahmadi Jirdehi, M. Shaterabadi, Incentive programs caused by the CCUS technology profit’s effect: Optimal configuration and energy planning of hybrid microgrid involving INVELOX turbine. Energy Technology, 8(10), 2020: 1‐13. https://doi.org/10.1002/ente.202000398
[43] M. Casini, Small vertical axis wind turbines for energy efficiency of buildings. Journal of Clean Energy Technologies, 4(1), 2016: 56‐65. https://doi.org/10.7763/jocet.2016.v4.254
[44] F. Sotoudeh, R. Kamali, S. M. Mousavi, Field tests and numerical modeling of INVELOX wind turbine application in low wind speed region. Energy, 181, 2019: 745‐759. https://doi.org/10.1016/j.energy.2019.05.186
[45] M. Shaterabadi, M. Ahmadi Jirdehi, N. Amiri, S. Omidi, Enhancement the economical and environmental aspects of plus‐zero energy buildings integrated with INVELOX turbines. Renewable Energy, 153, 2020: 1355‐1367. https://doi.org/10.1016/j.renene.2020.02.089
[46] M. Anbarsooz, M. S. Hesam, B. Moetakef‐ Imani, Numerical study on the geometrical parameters affecting the aerodynamicperformance of INVELOX. IET Renewable Power Generation, 11(6), 2017: 791‐798. https://doi.org/10.1049/iet‐rpg.2016.0668
[47] G. A. Gohar, T. Manzoor, A. Ahmad, Z. Hameed, F. Saleem, I. Ahmad, A. Sattar, A. Arshad, Design and comparative analysis of an INVELOX wind power generation system for multiple wind turbines through computational fluid dynamics. Advances in Mechanical Engineering, 11(4), 2019: 1‐10. https://doi.org/10.1177/1687814019831475
[48] S. R. Hosseini, D. Domiri Ganji, A novel design of nozzle‐diffuser to enhance performance of INVELOX wind turbine. Energy, 198, 2020: 1‐16. https://doi.org/10.1016/j.energy.2020.117082
[49] M. N. Patil, S. M. Ghadage, O. R. Gaikwad, D. V. Suryawanshi, A. D. Haral, Design and fabrication of INVELOX. International Research Journal of Engineering and Technology (IRJET), 6(6), 2019: 765‐768.
[50] A. Sedaghat, R. Al Waked, M. El Haj Assad, M., K. Khanafer, M. N. Bani Salim, Analysis of accelerating devices for enclosure wind turbines. International Journal of Astronautics and Aeronautical Engineering, 2(2), 2017: 1‐14.
https://doi.org/10.35840/2631‐5009/7509
[51] F. Nardecchia, D. Groppi, D. A., Garcia, L. de Santoli, Increasing energy production of a ducted wind turbine system. Wind Engineering, 4(46), 2020: 560‐576. https://doi.org/10.1177/0309524×19862760
[52] S. M. Baque Billah, S. Qasim, Development of MATLAB Simulink model of INVELOX to analyze the impact of inlet height on speed ratio, IEEE International Conference on Energy and Power Engineering (ICEPE), Mar. 2019, Dhaka, Bangladesh. https://doi.org/10.1109/cepe.2019.8726795
[53] A. Golozar, F. A. Shirazi, S. Siahpour, F. N. Khakiani, K. Gaemi Osguei, A novel aerodynamic controllable roof for improving performance of INVELOX wind delivery system. Wind Engineering, 45(3), 2020: 477‐490.
https://doi.org/10.1177/0309524×20910986
[54] A. A. Sayed, M. Z. Ibn Sadiq, Generating electricity using INVELOX and a better one compared to traditional wind turbine, 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Oct. 2018, New Delhi, India. https://doi.org/10.1109/icrest.2019.8644316
[55] M. Jahangiri, A. Alidadi Shamsabadi, O. Nematollahi, A. Mostafaeipour, Enviro‐ economic investigation of a new generation of wind turbines. International Journal of Strategic Energy & Environmental Planning, 2(3), 2020: 43‐59.
[56] F. Nardecchia, D. Groppi, D. A. Garcia, F. Bisegna, L. de Santoli, A new concept for a mini ducted wind turbine system. Renewable Energy, 175, 2021: 610‐624. https://doi.org/10.1016/j.renene.2021.04.097
[57] M. Ahmadi Jirdehi, M. Shaterabadi, A low‐ carbon strategy using INVELOX turbines in the presence of real‐time energy price uncertainty. Greenhouse Gases: Science and Technology, 11(3), 2021: 461‐482. https://doi.org/10.1002/ghg.2060
[58] K. Panagiotis, The historic development of the modern wind turbine, M.Sc. Thesis. International Hellenic University, Nov. 2018.
[59] V. S. Ragunath, J. K. Pandey, A. K. Mondal, A. Karn, Electricity generation from wind turbines at low wind velocities: A review. SSRN Electronic Journal, 2019. https://doi.org/10.2139/ssrn.3372736
[60] S. Suthagar, T. Kumaran, G. Gowtham, T. Maridurai, T. Sathish, S. Deivanayagi, Computational analysis of INVELOX wind turbine to analyze the venturi velocity by change the parameter of diffuser. Materials Today: Proceedings, 46, 2021: 4245‐4249. https://doi.org/10.1016/j.matpr.2021.03.049
[61] A. Farokhzade, M. J. Maghrebi, Inlet parameters effects of INVELOX on the aerodynamic performance using numerical simulation. Journal of Applied Fluid Mechanics, 14(5), 2021: 1511‐1520. http://doi:10.47176/jafm.14.05.32554
[62] S. Shayestehnezhad, S. Kargar, A. Lohrasbi Nichkoohi, A numerical study of INVELOX wind turbine considering the inlet shape design, 7th Iran Wind Energy Conference (IWEC2021), May 2021, Shahrood, Iran.
https://doi.org/10.1109/iwec52400.2021.9466962
[63] T. R. Reddy, C. I. Priyadarsini, M. V. S. M. Krishna, Guide vane height effect on performance of sheer wind turbine. Journal of Xi’an University of Architecture & Technology, XIII(5), 2021: 482‐489.
[64] S. Siahpour, F. N. Khakiani, V. Fazlollahi, A. Golozar, F. A. Shirazi, Morphing omni‐ directional panel mechanism: A novel active roof design for improving the performance of the wind delivery system. Energy, 217, 2021.
https://doi.org/10.1016/j.energy.2020.119400
[65] M. Aghbashlo, M. Tabatabaei, S. S. Hosseini, B. B. Dashti, M. M. Soufiyan, Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches. Journal of Cleaner Production, 171, 2018: 127‐136. https://doi.org/10.1016/j.jclepro.2017.09.263
[66] J. Taghinezhad, R. Alimardani, H. Mosazadeh, M. Masdari, Ducted wind turbines: A review. International Journal on Future Revolution in Computer Science & Communication Engineering, 5(4), 2019: 19‐25.
[67] S. Mathew, Wind energy: Fundamentals, resource analysis and economics. Springer‐ Verlag Berlin Heidelberg, 2006. https://doi.org/10.5860/choice.44‐0337
[68] F. C. Jelen, J. H. Black, Cost and optimization engineering. McGraw Hill Higher Education, 1982.
[69] M. J. Taheri, P. Taheri, Feasibility study of cogeneration for a gas power plant, IEEE Electrical Power and Energy Conference (EPEC 2017), Oct. 2017, Saskatoon, Canada. https://doi.org/10.1109/epec.2017.8286154
[70] W. K. Rao, Wind energy for power generation. Springer Nature, 2019. https://doi.org/10.1007/978‐3‐319‐75134‐4

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 1
March 2025

Loading

Last Edition

Volume 10
Number 1
March 2025

How to Cite

P. Taheri, M.J. Taheri, Techno-Economic Assessment for Installation of INVELOX Wind Turbines in Northern Iran. Applied Engineering Letters, 6(4), 2021: 133–147.
https://doi.org/10.18485/aeletters.2021.6.4.1

More Citation Formats

Taheri, P., & Taheri, M.J. (2021). Techno-Economic Assessment for Installation of INVELOX Wind Turbines in Northern Iran. Applied Engineering Letters6(4), 133–147.
https://doi.org/10.18485/aeletters.2021.6.4.1

Taheri, Pooya, and Taheri, Mohammad Javad. “Techno-Economic Assessment for Installation of INVELOX Wind Turbines in Northern Iran.” Applied Engineering Letters, vol. 6, no. 4, 2021, pp. 133–47,
https://doi.org/10.18485/aeletters.2021.6.4.1.

Taheri, Pooya, and Mohammad Javad Taheri. 2021. “Techno-Economic Assessment for Installation of INVELOX Wind Turbines in Northern Iran.” Applied Engineering Letters 6 (4): 133–47.
https://doi.org/10.18485/aeletters.2021.6.4.1.

Taheri, P. and Taheri, M.J. (2021). Techno-Economic Assessment for Installation of INVELOX Wind Turbines in Northern Iran. Applied Engineering Letters, 6(4), pp.133–147. doi: 10.18485/aeletters.2021.6.4.1.

TECHNO-ECONOMIC ASSESSMENT FOR INSTALLATION OF INVELOX WIND TURBINES IN NORTHERN IRAN

Authors:

Pooya Taheri1

, Mohammad Javad Taheri2

1Mechatronic Systems Engineering Department, Simon Fraser University, Canada 2Niroo Consulting Engineers, Tehran, Iran

Received: 28.08.2021.
Accepted: 08.10.2021.
Available: 31.12.2021.

Abstract:

This paper aims to provide a comprehensive feasibility study for the installation of a 100 MW wind power plant using the INVELOX system in Manjil, Gilan, in Northern Iran. In the first part of the paper, we provide a review of the status of wind energy installation in Iran. We then review the mathematical equations involved in wind power calculations. Afterwards, with the environmental data gathered from the corresponding authorities and open‐access sources, we analyzed the INVELOX system with its benefits and drawbacks. Then, based on the derived mathematical formulations, and using simulation software packages, the average wind power density is calculated, and the turbine system is designed accordingly. Finally, the economic profitability of this project was examined using a mathematical economic analysis and the COMFAR software package. In addition to the detailed feasibility study of this specific project, this article aims to provide a comprehensive literature review of the INVELOX system.

Keywords:

Economic analysis, Feasibility study, Fluid dynamic, INVELOX wind turbine, Wind energy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 1
March 2025

Loading

Last Edition

Volume 10
Number 1
March 2025