ISSN 2466-4677; e-ISSN 2466-4847
SCImago Journal Rank
2023: SJR=0.19
CWTS Journal Indicators
2023: SNIP=0.57
EFFECT OF COLLAR AND BEVEL ANGLE IN MIXING ENHANCEMENT OF MACH 1.76 JET EXITING FROM A CONVERGENT-DIVERGENT NOZZLE
Authors:
Bholu Kumar1, Suresh Kant Verma1, Shantanu Srivastava2
1Department of Mechanical Engineering, National Institute of Technology Patna, India
2Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, India
Received: 26.12.2020.
Accepted: 16.03.2021.
Available: 31.03.2021.
Abstract:
Keywords:
Supersonic jet, bevel collar, mixing, shock, SST k-ω
References:
[1] E. Gutmark, F. F. Grinstein, Flow control with noncircular jets. Annual review of fluid mechanics, 31 (1), 1999: 239-272. https://doi.org/10.1146/annurev.fluid.31.1.239
[2] E. Rathakrishnan, Experimental studies on the limiting tab. AIAA Journal, 47(10), 2009: 2475-2485. https://doi.org/10.2514/1.43790
[3] S. Srivastava, M. Kaushik, Supersonic square jet mixing in presence of cross-wire at nozzle exit, Am. J. Fluid Dyn, 5, 2015: 19-23. https://doi.org/10.5923/s.ajfd.201501.03
[4] E. Rathakrishnan, S. Srivastava, Performance of Corrugated Limiting Tab in Presence of Sharp Corners. In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013, p.3975.
[5] D. Lohia, B. Kumar, S. Srivastava, H. Paliwal, Numerical simulation of supersonic overexpanded jet from 2-D convergentdivergent nozzle. International Journal of Integrated Engineering, 10(8), 2018: 195-201.
https://doi.org/10.30880/ijie.2018.10.08.029
[6] B. Kumar, S. Srivastava, Modelling 2-D Supersonic Jet from a Convergent-Divergent Nozzle using k-ε Realizable Turbulence Model. Journal of Physics: Conference Series, 1240 (1), IOP Publishing, 2019.
[7] R. Srisha MV, G. Jagadeesh, Novel supersonic nozzles for mixing enhancement in supersonic ejectors. Applied Thermal Engineering, 71 (1), 2014: 62-71. https://doi.org/10.1016/j.applthermaleng.2014.06.025
[8] K. Fanshi, Y. Jin, T. Setoguchi, H. Dong Kim, Numerical analysis of Chevron nozzle effects on performance of the supersonic ejectordiffuser system. Journal of Thermal Science, 22 (5), 2013: 459-466. http://dx.doi.org/10.1007/s11630-013-0648-4
[9] S. AJ, J. Kurian, V. Sriramulu, Experimental study on mixing enhancement by petal nozzle in supersonic flow. Journal of Propulsion and Power, 12 (1), 1996: 165-169. https://doi.org/10.2514/3.24006
[10] T. Tillman, R. Paterson, W. Presz Jr, Supersonic nozzle mixer ejector. Journal of Propulsion and Power, 8 (2), 1992: 513-519. https://doi.org/10.2514/6.1989-2925
[11] D. Papamoschou, R. Anatol, The compressible turbulent shear layer: an experimental study. Journal of fluid Mechanics, 197 1988:453-477. https://doi.org/10.1017/S0022112088003325
[12] N. Clemens, M. Mungal. Large-scale structure and entrainment in the supersonic mixing layer. Journal of Fluid Mechanics, 284, 1995:171-216. https://doi.org/10.1017/S0022112095000310
[13] E. Gutmark, K. Schadow, K.H. Yu, Mixing enhancement in supersonic free shear flows. Annual Review of Fluid Mechanics, 27, 1995: 375-417. https://doi.org/10.1146/annurev.fl.27.010195.002111
[14] A. Narayanan, K. Damodaran, Supersonicejector characteristics using a petal nozzle. Journal of Propulsion and Power, 10 (5), 1994: 742-744. https://doi.org/10.2514/3.23788
[15] A. Srikrishnan, J. Kurian, V. Sriramulu. An experimental investigation of thermal mixing and combustion in supersonic flows. Combustion and flame, 107 (4), 1996:464-474. https://doi.org/10.1016/S0010-2180(96)00084-3
[16] M. Rao, A. Shingo, and S. Tsutomu, Comparative studies on supersonic free jets from nozzles of complex geometry. Applied Thermal Engineering, 99, 2016: 599-612. https://doi.org/10.1016/j.applthermaleng.2016.01.104
[17] R. Wlezien, V. Kibens, Influence of nozzle asymmetry on supersonic jets. AIAA journal, 26(1), 1988: 27-33. https://doi.org/10.2514/3.9846
[18] T. Norum, Screech suppression in supersonic jets. AIAA Journal, 21 (2), 1983: 235-240. https://doi.org/10.2514/3.8059
[19] E. Rice, G. Raman, Supersonic Jets from Bevelled Rectangular Nozzles. NASA Technical Memorandum, 1993: 10640.
[20] G. Raman, Screech tones from rectangular jets with spanwise oblique shock-cell structures. In 34th Aerospace Sciences Meeting and Exhibit, 1996.
[21] K. Viswanathan, Nozzle shaping for reduction of jet noise from single jet. AIAA Journal, 43 (5), 2005: 1008-1022. https://doi.org/10.2514/1.11331
[22] K. Viswanathan, Krishna, M. Czech. Adaptation of the beveled nozzle for high-speed jet noise reduction. AIAA journal, 49 (5), 2011: 932-944. https://doi.org/10.2514/1.J050409
[23] R. Powers, M. Dennis, Acoustics measurements of scale models of military style supersonic beveled nozzle jets with interior corrugations. 18th AIAA/CEAS Aeroacoustics Conference, 2012. https://doi.org/10.2514/6.2012-2116
[24] J. Wu, T. New, An investigation on supersonic bevelled nozzle jets. Aerospace Science and Technology, 63, 2017: 278-293. https://doi.org/10.1016/j.ast.2017.01.003
[25] E. Rathakrishnan, Applied gas dynamics. John Wiley & Sons; 2019 Apr 29.
[26] F. Menter, Zonal two-equation k-ω turbulence models for aerodynamic flows, 1993: AIAA paper 93-2906. https://doi.org/10.2514/6.1993-2906
[27] D. Wilcox, Formulation of the k-ω turbulence model revisited. AIAA journal, 46 (11), 2008: 2823-2838. https://doi.org/10.2514/1.36541
[28] S. Hromisin, J. Lampenfield, D. McLaughlin, P. Morris, Experimental and numerical study of injector design and operation on supersonic jet noise reduction using fluidic corrugations. In 22nd AIAA/CEAS Aero acoustics Conference, 2016, p.2989. https://doi.org/10.2514/6.2016-2989
[29] J. Morgan, P. Morris, D. McLaughlin, C. Prasad, Further development of supersonic jet noise reduction using nozzle fluidic inserts. In 55th AIAA aerospace sciences meeting, 2017, p. 0683. https://doi.org/10.2514/6.2017-0683
[30] P. Bradshaw, Turbulent secondary flows. An RFM, 19, 1987: 53-74. https://doi.org/10.1146/annurev.fl.19.010187.000 413
[31] J. Anderson, Modern compressible flow. Tata McGraw-Hill Education; 2003.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
B. Kumar, S.K. Verma, S. Srivastava, Effect of Collar and Bevel Angle in Mixing Enhancement of Mach 1.76 Jet Exiting from a Convergent-Divergent Nozzle. Applied Engineering Letters, 6(1), 2021: 1–10.
https://doi.org/10.18485/aeletters.2021.6.1.1
More Citation Formats
Kumar, B., Verma, S. K., & Srivastava, S. (2021). Effect of Collar and Bevel Angle in Mixing Enhancement of Mach 1.76 Jet Exiting from a Convergent-Divergent Nozzle. Applied Engineering Letters, 6(1), 1–10. https://doi.org/10.18485/aeletters.2021.6.1.1
Kumar, Bholu, et al. “Effect of Collar and Bevel Angle in Mixing Enhancement of Mach 1.76 Jet Exiting from a Convergent-Divergent Nozzle.” Applied Engineering Letters, vol. 6, no. 1, 2021, pp. 1–10,
https://doi.org/10.18485/aeletters.2021.6.1.1.
Kumar, Bholu, Suresh Kant Verma, and Shantanu Srivastava. 2021. “Effect of Collar and Bevel Angle in Mixing Enhancement of Mach 1.76 Jet Exiting from a Convergent-Divergent Nozzle.” Applied Engineering Letters 6 (1): 1–10. https://doi.org/10.18485/aeletters.2021.6.1.1.
Kumar, B., Verma, S.K. and Srivastava, S. (2021). Effect of Collar and Bevel Angle in Mixing Enhancement of Mach 1.76 Jet Exiting from a Convergent-Divergent Nozzle. Applied Engineering Letters, 6(1), pp.1–10. doi: 10.18485/aeletters.2021.6.1.1.
SCImago Journal Rank
2023: SJR=0.19
CWTS Journal Indicators
2023: SNIP=0.57
EFFECT OF COLLAR AND BEVEL ANGLE IN MIXING ENHANCEMENT OF MACH 1.76 JET EXITING FROM A CONVERGENT-DIVERGENT NOZZLE
Authors:
Bholu Kumar1, Suresh Kant Verma1, Shantanu Srivastava2
1Department of Mechanical Engineering, National Institute of Technology Patna, India
2Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, India
Received: 26.12.2020.
Accepted: 16.03.2021.
Available: 31.03.2021.
Abstract:
Keywords:
Supersonic jet, bevel collar, mixing, shock, SST k-ω
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)