ISSN 2466-4677; e-ISSN 2466-4847
SCImago Journal Rank
2024: SJR=0.300
CWTS Journal Indicators
2024: SNIP=0.77
INVESTIGATION OF FATIGUE CRACK PROPAGATION IN ADHESIVELY BONDED JOINTS USING FATIGUE TESTING, FINITE ELEMENT ANALYSIS AND NEURAL NETWORKS
Authors:
Piyush Gaur1
, Ravi Shankar Prasad2
1JATC-HBM Research Laboratory, Mechanical Engineering Department, IIT Delhi, India – 110016
2Institute of Engineering and Technology, JK Lakshmipat University, Jaipur, India – 302026
Received: 23.09.2019.
Accepted: 08.12.2019.
Available: 31.12.2019.
Abstract:
The current paper presents research aiming at characterizing the fatigue behaviour of adhesively bonded joints. In this study, a new mathematical model to predict fatigue crack propagation rates for adhesively bonded joints has been investigated and presented. The proposed method uses fatigue test data and stiffness data obtained from finite element model of bonded joints. T-peel and single lap shear bonded joints were prepared using aluminium alloy AA5754 and Betamate epoxy adhesive 4601. The fatigue tests were conducted using constant amplitude loading using an R ratio of 0.1 at a frequency of 10 Hz. The FE models used in this work were developed using fracture mechanics tools in Abaqus. The results were post processed to extract energy release rates in form of J Integrals and stress intensity factors. The stiffness results obtained from both experimental testing and numerical studies were combined using appropriate curve fitting models proposed in the literature to estimate the fatigue crack propagation rates and obtained the de-bond curves in the Paris regime for such joints. The crack growth rates were further modelled and validated using neural network technique in MATLAB.
Keywords:
Adhesive, fatigue, fracture, finite element method, JIntegral, stress-intensity factor, Paris Law
References:
[1] H. Kang, Z. Li, A. K. Khosrovaneh, B. Kang, Z. Li, Fatigue Life Predictions of Adhesive Joint of Sheet Steels. Procedia Eng., 133, 2015: 518-527. https://doi.org/10.1016/j.proeng.2015.12.623
[2] R. D. Adams, J. Comyn, W. C. Wake, Structural 148 adhesive joints in engineering. Chapman & Hall, 1997.
[3] J. A. Bishopp, E. K. Sim, G. E. Thompson, G. C. Wood, The Adhesively Bonded Aluminium Joint: The Effect of Pretreatment on Durability. J. Adhes., 26 (2-3), 1988: 237-263. https://doi.org/10.1080/00218468808071288
[4] D. A. Dillard, A. V. Pocius, Adhesion Science and Engineering. Adhes. Sci. Eng., Vol.1, Elsevier Science B.V. pp.56-86, 2002.
[5] F. J. Palhares Chaves, Fracture Mechanics Applied to the Design of Adhesively Bonded Joints, by Filipe José Palhares Chaves Supervisor, Thesis for the Degree of Doctor of Philosophy, Faculdade de Engenharia da Universidade do Porto, Portugal, 2013.
[6] M. M. Abdel Wahab, Fatigue in Adhesively Bonded Joints: A Review. ISRN Mater. Sci., 2012: (c), 2012: 1-25.
http://dx.doi.org/10.5402/2012/746308
[7] A. A. M. A. Campos, A. M. P. De Jesus, J. A. F. O. Correia, J. J. L. Morais, Fatigue Crack Growth Behavior of Bonded Aluminum Joints. Procedia Engineering, 160, no. Icmfm Xviii. 2016. https://doi.org/10.1016/j.proeng.2016.08.890
[8] K. Ishii, M. Imanaka, H. Nakayama, Fatigue Crack Propagation Behavior of Adhesively Bonded CFRP / CFRP and CFRP / Aluminum Joints. Journal of Adhesion Science and Technology, 21 (2): 2017: 153-167.
https://doi.org/10.1163/156856107780437499
[9] P. A. Carraro, G. Meneghetti, M. Quaresimin, M. Ricotta, Crack propagation analysis in composite bonded joints under mixed-mode (I+II) static and fatigue loading: a damage-based model. J. Adhes. Sci. Technol., 27 (13), 2013: 1393-1406. https://doi.org/10.1080/01694243.2012.735902
[10] P. K. Sahoo, B. Dattaguru, C. M. Manjunatha, C. R. L. Murthy, Fatigue de-bond growth in adhesively bonded single lap joints. Sādhanā, 37 (1), 2012: 79-88.
[11] G. Fernlund, M. Papini, D. McCammond, J. K. Spelt, Fracture load predictions for adhesive joints. Compos. Sci. Technol., 51 (4), 1994: 587-600. https://doi.org/10.1016/0266-3538(94)90091-4
[12] J. Newman Jr U. Zerbst, Engineering Fracture Mechanics. Eng. Fract. Mech., 70 (3-4), 2003: 367- 369.
https://doi.org/10.1016/S0013-7944(02)00124-8
[13] C. Lin K. M. Liechti, Similarity Concepts in the Fatigue Fracture of Adhesively Bonded Joints. J. Adhes., 21 (1), 1987: 1–24. https://doi.org/10.1080/00218468708074956
[14] A. D. Crocombe, C. Y. Ong, C. M. Chan, M. M. A. Wahab, I. A. Ashcroft, Investigating Fatigue Damage Evolution In Adhesively Bonded Structures Using Backface Strain Measurement. J. Adhes., 78, (9), 2002: 745-776.
https://doi.org/10.1080/00218460213835
[15] V. Shenoy, I. A. Ashcroft, G. W. Critchlow, A. D. Crocombe, M. M. Abdel Wahab, An investigation into the crack initiation and propagation behaviour of bonded single-lap joints using backface strain. Int. J. Adhes. Adhes., 29 (4), 2009: 361-371. https://doi.org/10.1016/j.ijadhadh.2008.07.008
[16] S. Azari, M. Papini, J. A. Schroeder, J. K. Spelt, The effect of mode ratio and bond interface on the fatigue behavior of a highly-toughened epoxy. Eng. Fract. Mech., 77 (3), 2010: 395-414. https://doi.org/10.1016/j.engfracmech.2009.09.011
[17] M. F. S. F. de Moura J. P. M. Gonçalves, Development of a cohesive zone model for fatigue/fracture characterization of composite bonded joints under mode II loading. Int. J. Adhes. Adhes., 54, 2014: 224-230.
https://doi.org/10.1016/j.ijadhadh.2014.07.002
[18] Y. Du L. Shi, Effect of vibration fatigue on modal properties of single lap adhesive joints. Int. J. Adhes. Adhes., 53, 2014: 72-79. https://doi.org/10.1016/j.ijadhadh.2014.01.007
[19] F. Moroni A. Pirondi, A procedure for the simulation of fatigue crack growth in adhesively bonded joints based on the cohesive zone model and different mixed-mode propagation criteria. Eng. Fract. Mech., 78 (8), 2011: 1808-1816.
https://doi.org/10.1016/j.engfracmech.2011.02.004
[20] X. X. Xu, A. D. Crocrombe, P. A. Smith, Fatigue behaviour of joints bonded with either filled, or filled and toughened, adhesive. Int. J. Fatigue, 16, (7), 1994: 469-477. https://doi.org/10.1016/0142-1123(94)90197-X
[21] T. R. Brussat, S. T. Chiu, S. Mostovoy, Fracture Mechanics for Structural Adhesive Bonds – Final Report, AFML-TR-77-163, Air Force Materials Laboratory, Wright-Patterson AFB, Ohio, 1977.
[22] B. Dattaguru, R. A. Everett, J. D. Whitcomb, W. S. Johnson, Geometrically Nonlinear Analysis of Adhesively Bonded Joints. J. Eng. Mater. Technol., 106 (1), 1984: 59-65. https://doi.org/10.1115/1.3225677
[23] A. J. Kinloch S. O. Osiyemi, Predicting the Fatigue Life of Adhesively-Bonded Joints. J. Adhes., 43 (1-2), 1993: 79-90.
https://doi.org/10.1080/00218469308026589
[24] A. Banerjee, G. Pohit, B. Panigrahi, Vibration Analysis and Prediction Natural Frequencies of Cracked Timoshenko Beam by Two Optimization Techniques – Cascade ANN and ANFIS. MaterialsToday: Proceedings, 4 (9), 2017: 9909-9913.
https://doi.org/10.1016/j.matpr.2017.06.292
[25] S. Nasiri, M. R. Khosravani, K. Weinberg, Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review. Eng. Fail. Anal., 81, 2017: 270-293. https://doi.org/10.1016/j.engfailanal.2017.07.011
[26] K. B. Davies C. E. Feddersen, Evaluation of fatiguecrack growth rates by polynomial curve fitting. [Ti alloy plate]. International Journal of Fracture, 9, 1973: 116-118.
[27] W. Clark and S. Hudak, Variability in Fatigue Crack Growth Rate Testing. J. Test. Eval., 3 (6), 1975: 454-476.
https://doi.org/10.1520/JTE11702J
[28] J. R. Mohanty, B. B. Verma, P. K. Ray, Determination of fatigue crack growth rate from experimental data: a new approach. Int. J. Microstruct. Mater. Prop., 5 (1), 2010: 79-87. https://doi.org/10.1504/IJMMP.2010.032503
[29] B. Mukherjee, A note on the analysis of fatigue crack growth data. Int. J. Fract. Mech., 8 (4), 1972:449-452.
https://doi.org/10.1007/BF00191107
[30] H. G. Munro, The determination of fatigue crack growth rates by a data smoothing technique. Int. J. Fract., 9 (3), 1973: 366-368.
[31] S. M. Beden, S. Abdullah, A. K. A Mohd Ihsan, , Review of Fatigue Crack Propagation Models for Metallic Components Review of Fatigue Crack Propagation Models for Metallic Components. European Journal of Scientific Research, 28 (3), 2009: 364-397.
[32] D. A. Virkler, B. Hillberry, P. K. Goel, The statistical nature of fatigue crack propagation. J. Eng. Mater. Technol., 101 (2), 1979: 148-153. https://doi.org/10.1115/1.3443666
[33] W. F. Wu C. C. Ni, A study of stochastic fatigue crack growth modeling through experimental data. Probabilistic Eng. Mech., 18 (2), 2003: 107-118. https://doi.org/10.1016/S0266-8920(02)00053-X
[34] R. Jones, W. Hu, A. J. Kinloch, A convenient way to represent fatigue crack growth in structural adhesives. Fatigue Fract. Eng. Mater. Struct., 38 (4), 2015: 379-391. https://doi.org/10.1111/ffe.12241
[35] P. Gaur, Investigation of Fatigue Crack Propagation in Adhesively Bonded Joints used in Aluminium Vehicle Structures, M. Res Thesis, Coventry University, 2012.
[36] S. T. Abrahami, T. Hauffman, J. M. M. de Kok, J. M. C. Mol, H. Terryn, Effect of Anodic Aluminum Oxide Chemistry on Adhesive Bonding of Epoxy. J. Phys. Chem. C, 120 (35), 2016: 19670-19677. https://doi.org/10.1021/acs.jpcc.6b04957
[37] G. W. Critchlow, D. M. Brewis, Review of surface pretreatments for aluminium alloys. Int. J. Adhes. Adhes., 16 (4), 1996: 255-275. https://doi.org/10.1016/S0143-7496(96)00014-0
[38] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, J. K. Spelt, Analytical models of adhesively bonded joints—Part I: Literature survey. Int. J. Adhes. Adhes., 29 (3), 2009: 319-330. https://doi.org/10.1016/j.ijadhadh.2008.06.005
[39] S. J. Spadafora,F. R. Pepe, Comparison of Sulfuric Acid/Boric Acid Anodize and Chromic Acid Anodize Processes. Health & Environmental Research Online (HERO), GRA and I (4), 1993.
[40] A. E. Bogdanovich, I. Kizhakkethara, Threedimensional finite element analysis of double-lap composite adhesive bonded joint using submodeling approach. Compos. Part B Eng., 30 (6), 1999: 537-551. https://doi.org/10.1016/S1359-8368(99)00026-8
[41] G. Wu, A. D. Crocombe, Simplified finite element modelling of structural adhesive joints. Comput. Struct., 61 (2), 1996: 385-391. https://doi.org/10.1016/0045-7949(96)00101-0
[42] R. A. Smith, The Determination of Fatigue Crack Growth Rates from Experimental Data. International Journal of Fracture, 9 (3), 1973: 352- 355. https://doi.org/10.1007/BF00049221
[43] M. F. Azeem, M. Hanmandlu, N. Ahmad, Generalization of adaptive neuro-fuzzy inference systems. IEEE Trans. Neural Networks, 11 (6), 2000: 133-1346. https://doi.org/10.1109/72.883438
[44] D. Karaboga E. Kaya, Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif. Intell. Rev., 2018. https://doi.org/10.1007/s10462-017-9610-2
[45] A. Menk S.P.A. Bordas, Numerically determined enrichment functions for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals. Int. J. Numer. Methods Eng., 83 (7), 2010: 805-828. https://doi.org/10.1002/nme.2858
[46] T. Pannachet, L. J. Sluys, H. Askes, Error estimation and adaptivity for discontinuous failure. Int. J. Numer. Methods Eng., 78 (5), 2009: 528-563. https://doi.org/10.1002/nme.2495
[47] G. Geißler, C. Netzker, M. Kaliske, Discrete crack path prediction by an adaptive cohesive crack model. Eng. Fract. Mech., 77 (18), 2010: 3541-3557. https://doi.org/10.1016/j.engfracmech.2010.04.029
[48] C. Gokgol, C. Basdogan, D. Canadinc, Estimation of fracture toughness of liver tissue: experiments and validation. Med. Eng. Phys., 34 (7), 2012: 882-891. https://doi.org/10.1016/j.medengphy.2011.09.030
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
P. Gaur, R.S. Prasad, Investigation of Fatigue Crack Propagation in Adhesively Bonded Joints Using Fatigue Testing, Finite Element Analysis and Neural Networks. Applied Engineering Letters, 4(4), 2019: 136–149.
https://doi.org/10.18485/aeletters.2019.4.4.5
More Citation Formats
Gaur, P., & Prasad, R. S. (2019). Investigation of Fatigue Crack Propagation in Adhesively Bonded Joints Using Fatigue Testing, Finite Element Analysis and Neural Networks. Applied Engineering Letters, 4(4), 136–149. https://doi.org/10.18485/aeletters.2019.4.4.5
Gaur, Piyush, and Ravi Shankar Prasad. “Investigation of Fatigue Crack Propagation in Adhesively Bonded Joints Using Fatigue Testing, Finite Element Analysis and Neural Networks.” Applied Engineering Letters, vol. 4, no. 4, 2019, pp. 136–49, https://doi.org/10.18485/aeletters.2019.4.4.5.
Gaur, Piyush, and Ravi Shankar Prasad. 2019. “Investigation of Fatigue Crack Propagation in Adhesively Bonded Joints Using Fatigue Testing, Finite Element Analysis and Neural Networks.” Applied Engineering Letters 4 (4): 136–49. https://doi.org/10.18485/aeletters.2019.4.4.5.
Gaur, P. and Prasad, R.S. (2019). Investigation of Fatigue Crack Propagation in Adhesively Bonded Joints Using Fatigue Testing, Finite Element Analysis and Neural Networks. Applied Engineering Letters, 4(4), pp.136–149. doi:10.18485/aeletters.2019.4.4.5.
SCImago Journal Rank
2024: SJR=0.300
CWTS Journal Indicators
2024: SNIP=0.77
INVESTIGATION OF FATIGUE CRACK PROPAGATION IN ADHESIVELY BONDED JOINTS USING FATIGUE TESTING, FINITE ELEMENT ANALYSIS AND NEURAL NETWORKS
Authors:
Piyush Gaur1
, Ravi Shankar Prasad2
1JATC-HBM Research Laboratory, Mechanical Engineering Department, IIT Delhi, India – 110016
2Institute of Engineering and Technology, JK Lakshmipat University, Jaipur, India – 302026
Received: 23.09.2019.
Accepted: 08.12.2019.
Available: 31.12.2019.
Abstract:
The current paper presents research aiming at characterizing the fatigue behaviour of adhesively bonded joints. In this study, a new mathematical model to predict fatigue crack propagation rates for adhesively bonded joints has been investigated and presented. The proposed method uses fatigue test data and stiffness data obtained from finite element model of bonded joints. T-peel and single lap shear bonded joints were prepared using aluminium alloy AA5754 and Betamate epoxy adhesive 4601. The fatigue tests were conducted using constant amplitude loading using an R ratio of 0.1 at a frequency of 10 Hz. The FE models used in this work were developed using fracture mechanics tools in Abaqus. The results were post processed to extract energy release rates in form of J Integrals and stress intensity factors. The stiffness results obtained from both experimental testing and numerical studies were combined using appropriate curve fitting models proposed in the literature to estimate the fatigue crack propagation rates and obtained the de-bond curves in the Paris regime for such joints. The crack growth rates were further modelled and validated using neural network technique in MATLAB.
Keywords:
Adhesive, fatigue, fracture, finite element method, JIntegral, stress-intensity factor, Paris Law
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)