ISSN 2466-4677; e-ISSN 2466-4847
SCImago Journal Rank
2023: SJR=0.19
CWTS Journal Indicators
2023: SNIP=0.57
WAVE ENERGY POTENTIAL ALONG THE GULF OF GUINEA COAST OF NIGERIA
Authors:
Olakunle Kayode1
, Olufemi A. Koya2
1Department of Mechanical Engineering, Osun State University, Osogbo, Nigeria
2Department of Mechanical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
Received: 26.09.2019.
Accepted: 04.12.2019.
Available: 31.12.2019.
Abstract:
Keywords:
Wave energy, Wave climate, Wave power-rainfall relationship, Nigeria coastal region, Bathymetry profile
References:
[1] REN21. Renewables 2018 Global Status Report. Paris: REN21 Secretariat, 2016.
https://www.ren21.net/wpcontent/uploads/2019/08/full-report-2018.pdf&sa (accessed 19 Aug 2019)
[2] S.O. Oyedepo, Energy and sustainable development in Nigeria: The way forward. Energy, Sustainability and Society, 2 (1) 2012: 1-17. https://doi.org/10.1186/2192-0567-2-15
[3] O. Olufayo, F. Omole, T. Lawanson, Utilizing Creeks for Integrated Rural Coastal Development of Ilaje Area of Nigeria. Ethiopian Journal of Environmental Studies and Management, 6 (3) 2013: 294-299. http://dx.doi.org/10.4314/ejesm.v6i3.10
[4] A.A. Emmanuel, T. Akinbode, Communal Facilities in Coastal Settlements of Ondo State, Nigeria: Assessment of Community-Based Organisations’ Efforts Using the Facility Contributory Index Model. British Journal of Education, Society & Behavioural Science, 2 (2), 2012: 150-161. https://doi.org/10.9734/BJESBS/2012/1084
[5] A. Clément, P. McCullen,, A. Falcão, A. Fiorentino, F. Gardner, K. Hammarlund, G. Lemonis, T. Lewis, K. Nielsen, S. Petroncini, M.-T. Pontes, B.-O. Schild, P. Sjöström, H.C. Søresen, T. Thorpe, Wave energy in Europe: current status and perspectives. Renewable and Sustainable Energy Review, 6 (5), 2002: 405-431. https://doi.org/10.1016/S1364-0321(02)00009-6
[6] R. Pelc, R.M. Fujita, Renewable Energy from the Ocean. Marine Policy, 26 (6) 2001: 471-479.
[7] SETIS – Ocean Wave Energy. http://setis.ec.europa.eu/technologies/Ocean wave-energy (accessed, 17 Nov. 2019)
[8] H. Titah-Benbouzid, M. Benbouzid, An Up-to-Date Technologies Review and Evaluation of Wave Energy Converters. International Review of Electrical Engineering-IREE, 10 (1), 2015: 52-61. https://doi.org/10.15866/iree.v10i1.5159
[9] T. Aderinto, H. Li, Ocean Wave Energy Converters: Status and Challenges. Energies. 11 (5), 2018: 1250, 1-26.
https://doi.org/10.3390/en11051250
[10] M. Nazari, H. Ghassemi, M. Ghiasi, M. Sayehbani, Design of the Point Absorber Wave Energy Converter for Assaluyeh Port. Iranica Journal of Energy & Environment, 4 (2), 2013:130-135. https://doi.org/10.5829/idosi.ijee.2013.04.02.09
[11] E. Rusu, F. Onea, Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands. Renewable Energy, 85, 2016: 687-703. https://doi.org/10.1016/j.renene.2015.07.042
[12] C.P. Nwilo and T.O. Badejo, “Impacts and management of oil spill pollution along the Nigerian coastal areas”, Department of Survey & Geoinformatics. University of Lagos, Lagos, Nigeria, 2005.
[13] C. Pianca, P. Mazzini, E. Siegle, Brazilian Offshore Wave Climate Based on NWW3 Reanalysis. Brazilian Journal of Oceanography, 58 (1), 2010:53-70. https://doi.org/10.1590/S167987592010000100006
[14] J. Herbich, Handbook of Coastal Engineering. McGraw-Hill, 2000.
[15] J. Brooks, Elsevier Ocean Engineering Book Series; Wave Energy Conversion. Elsevier, Amsterdam, 2003.
[16] Cruz, J. Ocean Wave Energy: Current Status and Future Perspectives. Springer, Berlin, 2008.
[17] S, Barstow, G. Mørk, L. Lønseth, J.P. Mathisen, (2009). World Waves Wave Energy Resource Assessments from the Deep Ocean to the Coast. Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7-10 September, 2009, pp.149-159.
[18] Data Source: www.en.climate-data.org
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
O. Kayode, O.A. Koya, Wave Energy Potential Along the Gulf of Guinea Coast of Nigeria. Applied Engineering Letters, 4(4), 2019: 128-135.
https://doi.org/10.18485/aeletters.2019.4.4.4
More Citation Formats
Kayode, O., & Koya, O. A. (2019). Wave Energy Potential Along the Gulf of Guinea Coast of Nigeria. Applied Engineering Letters, 4(4), 128–135. https://doi.org/10.18485/aeletters.2019.4.4.4
Kayode, Olakunle, and Olufemi A. Koya. “Wave Energy Potential along the Gulf of Guinea Coast of Nigeria.” Applied Engineering Letters, vol. 4, no. 4, 2019, pp. 128–35, https://doi.org/10.18485/aeletters.2019.4.4.4.
Kayode, Olakunle, and Olufemi A. Koya. 2019. “Wave Energy Potential along the Gulf of Guinea Coast of Nigeria.” Applied Engineering Letters 4 (4): 128–35. https://doi.org/10.18485/aeletters.2019.4.4.4.
Kayode, O. and Koya, O.A. (2019). Wave Energy Potential Along the Gulf of Guinea Coast of Nigeria. Applied Engineering Letters, 4(4), pp.128–135. doi:10.18485/aeletters.2019.4.4.4.
SCImago Journal Rank
2023: SJR=0.19
CWTS Journal Indicators
2023: SNIP=0.57
WAVE ENERGY POTENTIAL ALONG THE GULF OF GUINEA COAST OF NIGERIA
Authors:
Olakunle Kayode1
, Olufemi A. Koya2
1Department of Mechanical Engineering, Osun State University, Osogbo, Nigeria
2Department of Mechanical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
Received: 26.09.2019.
Accepted: 04.12.2019.
Available: 31.12.2019.
Abstract:
Keywords:
Wave energy, Wave climate, Wave power-rainfall relationship, Nigeria coastal region, Bathymetry profile
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)