Journal Menu
Archive
Last Edition

UV-VIS ANALYSIS OF COMPOSITE POLYACRYLONITRILE/IRON OXIDE NANOPARTICLES THIN FIBROUS MATS

Authors:

T. Tański1,2, W. Matysiak1

, P. Witek1

1Department of Materials Processing Technology, Management and Technology in Materials, Institute
of Engineering Materials and Biomaterials, Silesian University of Technology, 44-100 Gliwice, Poland
2Centre for Nanotechnology, Silesian University of Technology, 44-100 Gliwice, Poland

Received: 23.02.2017.
Accepted: 28.03.2017.
Available: 30.03.2017.

Abstract:

Iron oxide nanoparticles have a wide range of properties and a lot of applications in today nano-world. They can be used as: catalyst system [1], biomaterials for the tissue engineering [2], good base for magnetic nanoparticles – to locate hyperthermia, membranes for water purification or thermal energy storage. Poliacrylonitrile, although thermoplastic, is also rigid and brittle and used in manufacturing of synthetic fibers. The most useful applications of nanofibers reinforced by the Fe2O3 nanoparticles are in catalyst systems. Space between nanofibers is so small that all impurities are stopped and removed. In water treatment plants, chrome is the main element to be removed, because of its noxiousness to humans. The aim of this study was to fabricate composite nanofibers reinforced by the Fe2O3 nanoparticles with a polymer matrix of polyacrylonitrile (PAN) by the method of the solution electrospinning. After the production, morphology and structure were analyzed on scanning electron microscope; optical properties were analyzed by UV-VIS spectroscopy.

Keywords:

Electrospining, Nanofibers, Fe2O3,  UV-Vis Optical properties

References:

[1] C. Xia, Y. Jia, M. Tao, Q. Zhang, Tuning the band gap of hematite α-Fe2O3 by sulfur doping. Physics Letters A, 377 (31-33), 2013: pp.1943-1947.
[2] S.S. Shinde, R.A. Bansode, C.H. Bhosale, K.Y. Rajpure, Physical properties of hematite αFe2O3 thin films: application to photoelectrochemical solar cells. Journal of Semiconductors, 32 (1), 2011: pp.013001.
[3] M. Chirita, I. Grozescu, Fe2O3 – Nanoparticles, Physical Properties and Their Photochemical And Photoelectrochemical Applications. Politehnica, 54 (68), 2009: pp.1-8.
[4] P. Kumar, N. Rawat, D. Hang, H. Lee, R. Kumar, Controlling band gap and refractive index in dopant-free α-Fe2O3 films. Electronic Materials Letters, 11 (1), 2015: pp.13-23.
[5] E. Lewicka, P. Wyszomirski, Polish feldspar raw materials for the domestic ceramic tile industry – current state and prospects. Materiały ceramiczne, 62 (4), 2010: pp.582-585.
[6] M. Romero, J. Rincón, Surface and Bulk Crystallization of Glass-Ceramic in the Na2OCaO-ZnO-PbO-Fe2O3-Al2O3-SiO2 System Derived from a Goethite Waste. Journal of the American Ceramic Society, 82 (5), 1999: pp.1313-1317.
[7] C. Feldmann, Preparation of Nanoscale Pigment Particles. Advanced Materials, 13 (17), 2001: pp.1301-1303.
[8] H. Katsuki, S. Komarneni “Role of α-Fe2O3 Morphology on the Color of Red Pigment for Porcelain”. Journal of the American Ceramic Society, 2003: pp.183-185.
[9] H. Katsuki, S. Komarneni, MicrowaveHydrothermal Synthesis of Monodispersed Nanophase α-Fe2O3. Journal of the American Ceramic Society, 84 (10), 2001: pp.2313-2317.
[10] A. Escardino, S. Mestre, A. Barba, V. Beltran, A. Blasco, Kinetic study of Black Fe2O3-Cr2O3 Pigment Synthesis: I, Influence of Synthesis Time and Temperature. Journal of the American Ceramic Society, 86 (6), 2003: pp.945-950.
[11] X. Qian, X. Zhang, Y. Bai, T. Li, X. Tang, E. Wang, S. Dong, Photo-electro-chemical Characteristics of α-Fe2O3 Nanocrystalline Semiconductor Thin Film. Journal of Nanoparticle Research, 2 (2), 2000: pp.191-198.
[12] M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu, Y. Wang, Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/α-Fe2O3 Semiconductor Nano-heterostructures. ACS Nano, 4 (2), 2010: pp.681-688.
[13] N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H. Deng, J.Z. Zhang, Ultrafast Studies of Photoexcited Electron Dynamics in γ- and αFe2O3 Semiconductor Nanoparticles. The Journal of Physical Chemistry B, 102 (5), 1998: pp.770-776.
[14] X. Xu, Q. Wang, H.Ch. Choi, Y.H. Kim, Encapsulation of iron nanoparticles with PVP nanofibrous membranes to maintain their catalytic activity. Journal of Membrane Science, 348 (1-2), 2009: pp.231-237.
[15] J. Zhu, S. Wei, D. Rutman, N. Haldolaarachchige, D.P. Young, Z. Guo, Magnetic polyacrylonitrile-Fe@FeO nano composite fibers – electrospinning, stabilization and carbonization. Polymer, 52 (13), 2011: pp.2947-2955.
[16] L. Lu, L. Li, X. Wang, G. Li, Understanding of the Finite Size Effects on Lattice Vibrations and Electronic Transitions of Nano α-Fe2O3. The Journal of Physical Chemistry B, 109 (36), 2005: pp.17151-17156.
[17] P. Li, F. Lv, L. Liu, L. Ding, Y. Zhang, Transformation of iron oxides on PI electrospun membranes. Journal of Magnetism and Magnetic Materials, 414 (-), 2016: pp.105-110.
[18] Y. Cheng, B. Zou, Ch. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, X. Cao, Formation mechanism of Fe2O3 hollow fibers and their magnetic, electrochemical properties. CrystEngComm, 13 (8), 2011: pp.2863-2870.
[19] J.H. Kim, Y.J. Hong, Y.Ch. Kang, Y.J. Choi, Y.S. Kim, Superior electrochemical properties of αFe2O3 nanofibers with a porous core/dense shell structure formed from iron acetylacetonate-polyvinylpyrrolidone composite fibers. Electrochimica Acta, 154 (-), 2015: pp.211-218.
[20] N.H.A. Ngadiman, A. Idris, M. Irfan, D. Kurniawan, N.M. Yusof, R. Nasiri, γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold. Journal of the Mechanical Behavior of Biomedical Materials, 49 (-), 2015: pp.90-104.
[21] M.J. Nalbandian, M. Zhang, J. Sanchez, Y. Choa, J. Narn, D.M. Cwiertny, N.V. Myung, Synthesis and optimization of Fe2O3 nanofibers for chromate adsorption from contaminated water sources. Chemosphere, 144 (-), 2016: pp.975-981.
[22] C. Li, S. Zhang, J. Wang, T. Liu, Preparation of polyamides 6 (PA6)/Chitosan@FexOy composite nanofibers by electrospinning and pyrolysis and their Cr(VI)-removal performance. Catalysis Today, 224 (-), 2013: pp.94-103.
[23] K.W. Putz, O.C. Compton, M.J. Palmeri, S.T. Nguyen, High-Nanofiller-Content Graphene Oxide-Polymer Nanocomposites via VacuumAssisted Self-Assembly. Advanced Functional Materials, 20 (19), 2010: pp.3322-3329.
[24] Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon, 47 (15), 2009: pp.3538-3543.
[25] K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials, 22 (-), 2010: pp.1392-1401.
[26] H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Graphene oxide doper polyaniline for supercapacitors. Electrochemistry Communications, 11 (6), 2009: pp.1158-1161.
[27] S. Choi, G. Ankonina, D. Youn, S. Oh, J. Hong, A. Rothschild, I. Kim, Hollow ZnO Nanofibers Fabricated Using Electrospun Polymer Templates and Their Electronic Transport Properties. ACS Nano, 3 (9), 2009: pp.2623-2631.
[28] J. Park, J. Moon, S. Lee, S. Lim, T. Zyung, Fabrication and characterization of ZnO nanofibers by electrospinning. Current Applied Physics, 9 (3), 2009: pp.210-212.
[29] D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films, 496 (1), 2006: pp.26-29.
[30] X. Yang, C. Shao, H. Guan, X. Li, J. Gong, Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorganic Chemistry Communications, 7 (2), 2004: pp.176-178.
[31] N.Z. Noor Azman, S.A. Siddiqui, H.J. Haroosh, H.M.M. Albetran, B. Johannessen, Y. Dong, I.M. Low, Characteristics of X-Ray attenuation in electrospun bismuth oxide/polyactic acid nanofiber mats. Journal of Synchrotron Radiation, 20 (-), 2013: pp.741-748.
[32] C. Wang, C. Shao, Y. Liu, L. Zhang, Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scripta Materialia, 59 (3), 2008: pp.332-335.
[33] C. Wang, C. Shao, L. Wang, L. Zhang, X. Li, Y. Liu, Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. Journal of Colloid and Interface Science, 333 (1), 2009: pp.242-248.
[34] K. Brezesinski, R. Ostermann, P. Hartmann, J. Perlich, T. Brezesinski, Exepctional Photocatalytic Activity of Ordered Mesoporous βBi2O3 Thin Films and Electrospun Nanofiber Mats. Chemistry of Materials, 22 (10), 2010: pp.3079-3085.
[35] S. Mallakpour, M. Dinari, Enhancement in thermal properties of poly(vinyl alcohol) nanocomposites reinforced with Al2O3 nanoparticles. Journal of Reinforced Plastics and Composites, 32 (4), 2013: pp.217-224.
[36] M.R. Noordin, K.Y. Liew, Synthesis of Alumina Nanofibers and Composites, in: A. Kumar (Ed.), Nanofibers, InTech, Rijeka, 2010.
[37] A.M. Azad, Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Materials Science and Engineering A, 435-436(-), 2006: pp.468-473.
[38] J. Kim, S. Yoo, D. Kwak, H. Jung, T. Kim, K. Park, J . Lee, Characterization and application of electrospun alumina nanofibers. Nanoscale Research Letters, 9 (1), 2014: pp.1-6.
[39] N.A.M. Barakat, M.S. Khil, F.A. Sheikh, H.Y. Kim, Synthesis and Optical Properties of Two Cobalt Oxides (CoO and Co3O4) Nanofibers Produced by Electrospinning Process. Journal of the Physical Chemistry C, 112 (32), 2008: pp.12225-12233.
[40] Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, Y. Lei, Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosensors and Bioelectronics, 26 (2), 2010: pp.542-548.
[41] J.Y. Park, I.H. Lee, Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning. Journal of Nanoscience and Nanotechnology, 10 (5), 2010: pp.3402-3405.
[42] B. Caraotão, E. Carneiro, P. Sá, B. Almeida, S. Carvalho, Properties of Electrospun TiO2 nanofibers. Journal of Nanotechnology, 2014(-), 2014: pp.1-5.
[43] B. Ding, C.K. Kim, H.Y. Kim, M.K. Seo, S.J. Park, Titanium dioxide nanofibers prepared by using electrospinning method. Fibers and Polymers, 5 (2), 2004: pp.105-109.
[44] M.A. Kanjwal, N.A.M. Barakat, F.A. Sheikh, M.S. Khil, H.Y. Kim, Functionalization of electrospun titanium oxide nanofibers with silver nanoparticles: strongly effective photocatalyst. International Journal of Applied Ceramic Technology, 7 (1), 2010: pp.54-63.
[45] X. Mou, X. Wei, Y. Li, W. Shen, Tuning crystalphase and shape of Fe2O3 nanoparticles for catalytic applications. CrystEngComm, 14 (16), 2012: pp.5107-5120.
[46] W. Kang, F. Li, Y. Zhao, C. Qiao, J. Ju, B. Cheng, Fabrication of porous Fe2O3/PTFE nanofiber membranes and their application as a catalyst for dye degradation. RSC Advances, 6 (39), 2016: pp.32646-32652.
[47] C. Park, S. Kang, L.D. Tijing, H.R. Pant, C.S. Kim, Inductive heating of electrospun Fe2O3/ polyurethane composite mat under highfrequency magnetic field. Ceramics International, 39 (8), 2013: pp.9785-9790.
[48] H. Shao, X. Zhang, S. Liu, F. Chen, J. Xu, Y. Feng, Preparation of pure iron nanofibers via electrospinning. Materials Letters, 65 (12), 2011: pp.1775-1777.
[49] L. Xia, J. Ju, W. Xu, Ch. Ding, B. Cheng, Preparation and characterization of hollow Fe2O3 ultra-fine fibers by centrifugal spinning. Materials & Design, 96 ,2016: pp.439-445.
[50] S. Agarwal, A. Greiner, J.H. Wendorff, Functional materials by electrospinning of polymers. Progress in Polymer Science, 38 (6), 2013: pp.963-991.
[51] M. Zhang, C. Shao, P. Zhang, C. Su, X. Zhang, P. Liang, Y. Sun, Y. Liu, Bi2MoO6 microtubes: Controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 225- 226, 2012: pp.155-163.
[52] K. Ji, A.J. Medford, X. Zhang, Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide. Polymer, 50 (2), 2009: pp.605-612.
[53] H. Zhu, E. Zhu, G. Ou, L. Gao, J. Chen, Fe(3)O(4)-Au and Fe(2)O(3)-Au Hybrid Nanorods: Layer-by-Layer Assembly Synthesis and Their Magnetic and Optical Properties. Nanoscale Research Letters, 5 (-), 2010: pp.1755- 1761

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 1
March 2024

Last Edition

Volume 9
Number 1
March 2024

How to Cite

T. Tański, W. Matysiak, P. Witek, UV-VIS Analysis of Composite Polyacrylonitrile/Iron Oxide Nanoparticles Thin Fibrous Mats, Applied Engineering Letters, 2(1), 2017: 54-59.

More Citation Formats

Tański, T., Matysiak, W., & Witek, P. (2017). UV-VIS Analysis of Composite Polyacrylonitrile/Iron Oxide Nanoparticles Thin Fibrous Mats. Applied Engineering Letters2(1), 54-59.

Tański, T., et al. “UV-VIS Analysis of Composite Polyacrylonitrile/Iron Oxide Nanoparticles Thin Fibrous Mats.“ Applied Engineering Letters, vol. 2, no. 1, 2017, pp. 54-59.

Tański, T., W. Matysiak, and P. Witek. 2017. “UV-VIS Analysis of Composite Polyacrylonitrile/Iron Oxide Nanoparticles Thin Fibrous Mats.“ Applied Engineering Letters, 2 (1): 54-59.

Tański, T., Matysiak, W. and Witek, P. (2017). UV-VIS Analysis of Composite Polyacrylonitrile/Iron Oxide Nanoparticles Thin Fibrous Mats. Applied Engineering Letters, 2(1), pp. 54-59.

UV-VIS ANALYSIS OF COMPOSITE POLYACRYLONITRILE/IRON OXIDE NANOPARTICLES THIN FIBROUS MATS

Authors:

T.Tański1,2, W.Matysiak1

, P.Witek1

1Department of Materials Processing Technology, Management and Technology in Materials, Institute
of Engineering Materials and Biomaterials, Silesian University of Technology, 44-100 Gliwice, Poland
2Centre for Nanotechnology, Silesian University of Technology, 44-100 Gliwice, Poland

Received: 23.02.2017.
Accepted: 28.03.2017.
Available: 30.03.2017.

Abstract:

Iron oxide nanoparticles have a wide range of properties and a lot of applications in today nano-world. They can be used as: catalyst system [1], biomaterials for the tissue engineering [2], good base for magnetic nanoparticles – to locate hyperthermia, membranes for water purification or thermal energy storage. Poliacrylonitrile, although thermoplastic, is also rigid and brittle and used in manufacturing of synthetic fibers.
The most useful applications of nanofibers reinforced by the Fe2O3 nanoparticles are in catalyst systems. Space between nanofibers is so small that all impurities are stopped and removed. In water treatment plants, chrome is the main element to be removed, because of its noxiousness to humans.
The aim of this study was to fabricate composite nanofibers reinforced by the Fe2O3 nanoparticles with a polymer matrix of polyacrylonitrile (PAN) by the method of the solution electrospinning. After the production, morphology and structure were analyzed on scanning electron microscope; optical properties were analyzed by UV-VIS spectroscopy.

Keywords:

Electrospining, Nanofibers, Fe2O3,  UV-Vis Optical properties

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 9
Number 1
March 2024

Last Edition

Volume 9
Number 1
March 2024