Journal Menu
Archive
Last Edition
Archive

INFLUENCE OF Ni ADDITION ON MICROSTRUCTURE AND SOLIDIFICATION BEHAVIOUR OF SAC305 LEAD-FREE SOLDERS

Authors:

Tereza Machajdíková1
, Roman Čička1
, Ivona Černičková1
, Libor Ďuriška1

,

Marián Drienovský1
, Peter Gogola1
, Jakub Perička2

1Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials, Trnava, Slovakia
2Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Applied Informatics, Automation and Mechatronics, Trnava, Slovakia

Received: 16 April 2025
Revised: 6 June 2025
Accepted: 17 June 2025
Published: 30 June 2025

Abstract:

This study investigates the addition of Ni into SAC305 solder alloy with varying nickel content (0–4 wt.% Ni) using experimental techniques and computational thermodynamics. The experimental part employed various techniques (scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and differential scanning calorimetry). The microstructure of the investigated alloys consisted of primary β-Sn and an eutectic mixture containing β-Sn and two intermetallic compound particles (Ag3Sn and Cu6Sn5). Small Ni additions (up to 0.2 wt.%) refined the microstructure and significantly reduced the undercooling from 30°C (SAC305) to about 12°C. However, Ni additions exceeding 0.4 wt.% led to microstructural coarsening and formation of Ni3Sn4 phase. For the computational part, Thermo-Calc software was used to investigate the conditions of Cu6Sn5 and Ni3Sn4 phase formation. The experimental results were consistent with computations from Thermo-Calc. The results suggest that minor Ni additions (up to 0.2 wt.%) offer possibilities to refine the microstructure and reduce undercooling, potentially improving the properties of solders.

Keywords:

SAC305, Nickel addition, Phase composition, Undercooling, Computational thermodynamics

References:

[1] M.K. Jha, A. Kumari, P.K. Choubey, J.-C. Lee, V. Kumar, J. Jeong, Leaching of lead from solder material of waste printed circuit boards (PCBs). Hydrometallurgy, 121-124, 2012: 28- 34.
https://doi.org/10.1016/j.hydromet.2012.04.010
[2] M. Abtew, G. Selvaduray, Lead-free solders in microelectronics. Materials Science and Engineering: R: Reports, 27(5-6), 2000: 95-141. https://doi.org/10.1016/S0927-796X(00)00010-3
[3] S. Menon, E. George, M. Osterman, M. Pecht, High lead solder (over 85%) solder in the electronics industry: RoHS exemptions and alternatives. Journal of Materials Science: Materials in Electronics, 26, 2015: 4021-4030. https://doi.org/10.1007/s10854-015-2940-4
[4] N. Jiang, L. Zhang, Z.-Q. Liu, L. Sun, W.-M. Long, P. He, M. Xiong, M. Zhao, Reliability issues of lead-free solder joints in electronic devices. Science and Technology of Advanced Materials, 20(1), 2019: 876-901. https://doi.org/10.1080/14686996.2019.1640072
[5] C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Properties of lead-free solder alloys with rare earth element additions. Materials Science and Engineering, 44(1), 2004: 1-44. https://doi.org/10.1016/j.mser.2004.01.001
[6] H.R. Kotadia, P.D. Howes, S.H. Mannan, A review: On the development of low melting temperature Pb-free solders. Microelectronics Reliability, 54(6-7), 2014: 1253-1273.
https://doi.org/10.1016/j.microrel.2014.02.025
[7] Y. Chi-Yang, Yu, J. Lee, W.-L. Chen, J.-G. Duh, Enhancement of the impact toughness in SnAgCu/Cu solder joints via modifying the microstructure of solder alloy. Materials Letters, 119, 2014: 20-23.
https://doi.org/10.1016/j.matlet.2013.12.088
[8] Y. Wang, G. Wang, K. Song, K. Zhang, Effect of Ni addition on the wettability and microstructure of Sn2.5Ag0.7Cu0.1RE solder alloy. Materials & Design, 119, 2017: 219-224.
https://doi.org/10.1016/j.matdes.2017.01.046
[9] S. Wang, Y. Yao, W. Wang, Microstructure and size effect of interfacial intermetallic on fracture toughness of Sn3.0Ag0.5Cu solder interconnects. Engineering Fracture Mechanics, 202, 2018: 259-274. https://doi.org/10.1016/j.engfracmech.2018.09.031
[10] I.E. Anderson, B.A. Cook, J.L. Harringa, R.L. Terpstra, Sn-Ag-Cu solders and solder joints: Alloy development, microstructure, and properties. JOM, 54, 2002: 26–29. https://doi.org/10.1007/BF02701845
[11] T. Zhu, Q. Zhang, H. Bai, L. Zhao, J. Yan, Investigations on deformation and fracture behaviors of the multi-alloyed SnAgCu solder and solder joint by in-situ observation. Microelectronics Reliability, 135, 2022:
114574. https://doi.org/10.1016/j.microrel.2022.114574
[12] T. Zhu, Q. Zhang, H. Bai, L. Zhao, J. Yan, Improving tensile strength of SnAgCu/Cu solder joint through multi-elements alloying. Materials Today Communications, 29, 2021: 102768.
https://doi.org/10.1016/j.mtcomm.2021.102768
[13] F. Cheng, H. Nishikawa, T. Takemoto. Microstructural and mechanical properties of Sn-Ag-Cu lead-free solders with minor addition of Ni and/or Co. Journal of Materials Science, 43, 2008: 3643-3648.
https://doi.org/10.1007/s10853-008-2580-7
[14] M. Sona, K.N. Prabhu. Review on microstructure evolution in Sn–Ag–Cu solders and its effect on mechanical integrity of solder joints. Journal of Materials Science: Materials in Electronics, 24, 2013: 3149–3169. https://doi.org/10.1007/s10854-013-1240-0
[15] A. Zribi, A. Clark, L. Zavalij, P. Borgesen, E.J. Cotts, The growth of intermetallic compounds at Sn-Ag-Cu solder/Cu and Sn-Ag-Cu solder/Ni interfaces and the associated evolution of the solder microstructure. Journal of Electronic Materials, 30, 2001: 1157-1164. https://doi.org/10.1007/s11664-001-0144-6
[16] A.R. Fix, G.A. Lopez, I. Brauer, W. Nüchter, E.J. Mittemeijer, Microstructural development of Sn-Ag-Cu solder joints. Journal of Electronic Materials, 34, 2005: 137-142. https://doi.org/10.1007/s11664-005-0224-0
[17] Y.W. Wang, Y.W. Lin, C.R. Kao, Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates. Microelectronics Reliability, 49(3), 2009: 248-252.
https://doi.org/10.1016/j.microrel.2008.09.010
[18] A.E. Hammad, Evolution of microstructure, thermal and creep properties of Ni-doped Sn0.5Ag0.7Cu low-Ag solder alloys for electronic applications. Materials & Design, 52, 2013: 663-670.
https://doi.org/10.1016/j.matdes.2013.05.102
[19] D. Zhou, A.S.M.A. Haseeb, A. Andriyana, Mechanical performance of advanced multicomponent lead-free solder alloy under thermal aging. Materials Today Communications, 33, 2022: 104-430.
https://doi.org/10.1016/j.mtcomm.2022.104430
[20] K.S. Kim, S.H. Huh, K. Suganuma, Effects of fourth alloying additive on microstructures and tensile properties of Sn-Ag-Cu alloy and joints with Cu. Microelectronics Reliability, 43(2), 2003: 259-267.
https://doi.org/10.1016/S0026-2714(02)00239-1
[21] A.A. El-Daly, A.E. Hammad, A. Fawzy, D.A. Nasrallh, Microstructure, mechanical properties, and deformation behavior of Sn1.0Ag0.5Cu solder after Ni and Sb additions. Materials & Design, 43, 2013: 40-49. https://doi.org/10.1016/j.matdes.2012.06.058
[22] H.-K. Cheng, C.-W. Huang, H. Lee, Y.-L. Wang, T.-F. Liu, C.-M. Chen, Interfacial reactions between Cu and SnAgCu solder doped with minor Ni. Journal of Alloys and Compounds, 622, 2015: 529-534.
https://doi.org/10.1016/j.jallcom.2014.10.121
[23] G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, K. Nogita, The influence of Ni and Zn additions on microstructure and phase transformations in Sn0.7Cu/Cu solder joints. Acta Materialia, 83, 2015: 357-371. https://doi.org/10.1016/j.actamat.2014.10.003
[24] A.E. Hammad, Enhancing the ductility and mechanical behavior of Sn-1.0Ag-0.5Cu lead-free solder by adding trace amount of elements Ni and Sb. Microelectronics Reliability, 87, 2018: 133-141. https://doi.org/10.1016/j.microrel.2018.06.015
[25] A. Hammad, A. El-Taher, Mechanical deformation behaviour of Sn-Ag-Cu solders with minor addition of 0.05 wt.% Ni. Journal of Electronic Materials, 43, 2014: 4146-4157. https://doi.org/10.1007/s11664-014-3323-y
[26] F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, X.R. Zhang, The study of mechanical properties of SnAgCu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures. Journal of Alloys and Compounds, 507(1), 2010: 215-224. https://doi.org/10.1016/j.jallcom.2010.07.160
[27] A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Enhanced ductility and mechanical strength of Ni-doped Sn3.0Ag0.5Cu lead-free solders. Materials & Design, 55, 2014: 309-318.
https://doi.org/10.1016/j.matdes.2013.10.009
[28] K. Nogita, Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys. Intermetallics, 18(1), 2010: 145-149. https://doi.org/10.1016/j.intermet.2009.07.005
[29] K. Nogita, T. Nishimura, Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn-Cu-Ni lead-free solder alloys. Scripta Materialia, 59(2), 2008: 191-194. https://doi.org/10.1016/j.scriptamat.2008.03.002
[30] C. Yang, F. Song, S.W. Ricky Lee, Impact of Ni concentration on the intermetallic compound formation and brittle fracture strength of Sn-Cu-Ni (SCN) lead-free solder joints. Microelectronics Reliability, 54(2), 2014: 435-446. https://doi.org/10.1016/j.microrel.2013.10.005
[31] J. Zhang, L. Zhang, X. Huang, Ch. Wu, K. Deng, W.M. Long, Effect of adding Ni nanoparticles on the melting characteristics, mechanical properties and intermetallic compound growth of Sn58Bi solder. Soldering & Surface Mount Technology, 37(1), 2025: 60-70. https://doi.org/10.1108/SSMT-09-2024-0053
[32] K. Nogita, C.M. Gourlay, J. Read, T. Nishimura, S. Suenaga, A.K. Dahle, Effects of phosphorus on microstructure and fluidity of Sn-0.7Cu-0.05Ni lead-free solder. Materials Transactions, 49(3), 2008: 443-448 https://doi.org/10.2320/matertrans.MBW200713
[33] A.A. El-Daly, A.M. El-Taher, Improved strength of Ni and Zn-doped Sn-2.0Ag-0.5Cu lead-free solder alloys under controlled processing parameters. Materials & Design, 47, 2013: 607-614.
https://doi.org/10.1016/j.matdes.2012.12.081

© 2025 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 4
December 2025

Loading

Last Edition

Volume 10
Number 4
December 2025

How to Cite

T. Machajdíková, R. Čička, I. Černičková, L. Ďuriška, M. Drienovský, P. Gogola, J. Perička, Influence of Ni Addition on Microstructure and Solidification Behaviour of SAC305 Lead-Free Solders. Applied Engineering Letters, 10(2), 2025: 100-108.
https://doi.org/10.46793/aeletters.2025.10.2.4

More Citation Formats

Machajdíková, T., Čička, R., Černičková, I., Ďuriška, L., Drienovský, M., Gogola, P., & Perička, J. (2025). Influence of Ni Addition on Microstructure and Solidification Behaviour of SAC305 Lead-Free Solders. Applied Engineering Letters, 10(2), 100-108.
https://doi.org/10.46793/aeletters.2025.10.2.4

Machajdíková, Tereza, et al. “Influence of Ni Addition on Microstructure and Solidification Behaviour of SAC305 Lead-Free Solders.“ Applied Engineering Letters, vol. 10, no. 2, 2025, pp. 100-108.
https://doi.org/10.46793/aeletters.2025.10.2.4

Machajdíková, Tereza, Roman Čička, Ivona Černičková, Libor Ďuriška, Marián Drienovský, Peter Gogola, and Jakub Perička. 2025. “Influence of Ni Addition on Microstructure and Solidification Behaviour of SAC305 Lead-Free Solders.“ Applied Engineering Letters, 10 (2): 100-108.
https://doi.org/10.46793/aeletters.2025.10.2.4

Machajdíková, T., Čička, R., Černičková, I., Ďuriška, L., Drienovský, M., Gogola, P., and Perička, J. (2025). Influence of Ni Addition on Microstructure and Solidification Behaviour of SAC305 Lead-Free Solders. Applied Engineering Letters, 10(2), pp. 100-108.
doi: 10.46793/aeletters.2025.10.2.4.