ISSN 2466-4677; e-ISSN 2466-4847
SCImago Journal Rank
2024: SJR=0.300
CWTS Journal Indicators
2024: SNIP=0.77
Optimization of machining parameters in turning to steel using grey relational analysis
Authors:
,
, Dhyai H. Jawad Aljashaami1
Dhyai H. Jawad Aljashaami1
Received: 27 April 2025
Revised: 11 June 2025
Accepted: 19 June 2025
Published: 30 June 2025
Abstract:
Keywords:
Turning process, Nanofluid, Material removal rate, Grey relation analysis, Taguchi method
References:
[1] M. Sayuti, O.M. Erh, A.A.D. Sarhan, M. Hamdi, Investigation on the morphology of the machined surface in end milling of aerospace AL6061-T6 for novel uses of SiO₂ nanolubrication system. Journal of Cleaner Production, 66, 2014: 655–663. https://doi.org/10.1016/j.jclepro.2013.11.058
[2] A.K. Sharma, A.K. Tiwari, A.R. Dixit, R.K. Singh, Investigation into performance of SiO₂ nanoparticle based cutting fluid in machining process. Materials Today: Proceedings, 4(2), 2017: 133–141.
https://doi.org/10.1016/j.matpr.2017.01.006
[3] D.G. Subhedar, B.M. Ramani, A. Gupta, Experimental investigation of heat transfer potential of Al₂O₃/water-mono ethylene glycol nanofluids as a car radiator coolant. Case Studies in Thermal Engineering, 11, 2018: 26–34. https://doi.org/10.1016/j.csite.2017.11.009
[4] F. Puh, Z. Jurković, M. Perinić, M. Brezočnik, S. Buljan, Optimization of machining parameters for turning operation with multiple quality characteristics using grey relational analysis. Tehnički Vjesnik, 23(2), 2016: 377–382. https://doi.org/10.17559/TV-20150526131717
[5] M. Nawaz, U. Nazir, An enhancement in thermal performance of partially ionized fluid due to hybrid nano-structures exposed to magnetic field. AIP Advances, 9(8), 2019: 085024.
https://doi.org/10.1063/1.5120455
[6] L.B. Abhang, M. Hameedullah, Optimization of machining parameters in steel turning operation by Taguchi method. Procedia Engineering, 38, 2012: 40–48. https://doi.org/10.1016/j.proeng.2012.06.007
[7] E. Nas, N.A. Özbek, Optimization of the machining parameters in turning of hardened hot work tool steel using cryogenically treated tools. Surface Review and Letters, 27(5), 2019: 1950177.
https://doi.org/10.1142/S0218625X19501774
[8] S. Roy, A. Ghosh, High speed turning of AISI 4140 steel using nanofluid through twin jet SQL system. Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference, Vol.2, 10–14 June 2013, Madison, Wisconsin, USA, V002T04A002. https://doi.org/10.1115/MSEC2013-1067
[9] S.K. Nayak, J.K. Patro, S. Dewangan, S. Gangopadhyay, Multi-objective optimization of machining parameters during dry turning of AISI 304 austenitic stainless steel using grey relational analysis. Procedia Materials Science, 6, 2014: 701–708. https://doi.org/10.1016/j.mspro.2014.07.086
[10] M.S. Surya, M. Shalini, A. Sridhar, Multi-Response Optimization on EN19 Steel Using Grey Relational Analysis Through Dry & Wet Machining. Materials Today: Proceedings, 4(2), 2017: 2157–2166.
https://doi.org/10.1016/j.matpr.2017.02.062
[11] N.M.I. Elsiti, M.H.S. Elmunafi, Optimization of machining parameters for turning process by using grey relational analysis. World Journal of Advanced Research and Reviews, 17(1), 2023: 755-761.
https://doi.org/10.30574/wjarr.2023.17.1.0080
[12] P. Jadhav, S. Kumar, A. Bongale, Optimization of cutting forces by cryogenic treatment on tungsten carbide inserts during dry turning of the P 20 tool steel. Materials Today: Proceedings, 28, 2020: 2485–2493. https://doi.org/10.1016/j.matpr.2020.04.798
[13] M.S. Surya, Optimization of machining parameters while turning AISI316 stainless steel using response surface methodology. Scientific Reports, 14, 2024: 30083. https://doi.org/10.1038/s41598-024-78657-z
[14] M. Mia, N.R. Dhar, Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. The International Journal of Advanced Manufacturing Technology, 88, 2017: 739–753. https://doi.org/10.1007/s00170-016-8810-2
[15] I. Ramu, P. Srinivas, K. Venkatesh, Taguchi based grey relational analysis for optimization of machining parameters of CNC turning steel 316. IOP Conference Series: Materials Science and Engineering, 377, 2018: 012078. https://doi.org/10.1088/1757-899X/377/1/012078
[16] S.S. Mulugundam, G. Prasanthi, A.K. Kumar, V.K. Sridhar, S.K. Gugulothu, Optimization of cutting parameters while turning Ti-6Al-4V using response surface methodology and machine learning technique. International Journal on Interactive Design and Manufacturing, 15(3), 2021: 453–462.
https://doi.org/10.1007/s12008-021-00774-0
[17] M. Fnides, S. Amroune, B. Mohamad, B. Fnides, B. Toufik, Optimization of surface roughness and MRR when milling 25CrMo4-25 steel using Taguchi design. Academic Journal of Manufacturing Engineering, 22(4), 2024: 118-125.
[18] C.Y. Chang, R. Huang, P.C. Lee, T.L. Weng, Application of a weighted Grey-Taguchi method for optimizing recycled aggregate concrete mixtures. Cement and Concrete Composites, 33(10), 2011: 1038–1049. https://doi.org/10.1016/j.cemconcomp.2011.06.005
[19] H. Ha, S. Müller, R.-P. Baumann, B. Hwang, Peakforce quantitative nanomechanical mapping for surface energy characterization on the nanoscale: A mini-review. Facta Universitatis, Series: Mechanical Engineering,
21(1), 2024: 001–012. https://doi.org/10.22190/FUME221126001H
[20] H. Makri, C. Saib, S. Amroune, S. Zergane, B. Mohamad, M. Benarioua, K. Necib, Elaboration and characterization of Cu–Zn–Al shape memory alloys. Pollack Periodica, 20(1), 2025: 117–124.
https://doi.org/10.1556/606.2024.01122
© 2025 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
W.N. Hasan, D.H.J. Aljashaami, Optimization of Machining Parameters in Turning to Steel Using Grey Relational Analysis. Applied Engineering Letters, 10(2), 2025: 90-99.
https://doi.org/10.46793/aeletters.2025.10.2.3
More Citation Formats
Hasan, W.N., & Aljashaami, D.H.J. (2025). Optimization of Machining Parameters in Turning to Steel Using Grey Relational Analysis. Applied Engineering Letters, 10(2), 90-99.
https://doi.org/10.46793/aeletters.2025.10.2.3
Naji Hasan, Wisam and Dhyai H. Jawad Aljashaami. “Optimization of Machining Parameters in Turning to Steel Using Grey Relational Analysis.“ Applied Engineering Letters, vol. 10, no. 2, 2025, pp. 90-99.
https://doi.org/10.46793/aeletters.2025.10.2.3
Naji Hasan, Wisam and Dhyai H. Jawad Aljashaami. “2025. Optimization of Machining Parameters in Turning to Steel Using Grey Relational Analysis.“ Applied Engineering Letters, 10 (2): 90-99.
https://doi.org/10.46793/aeletters.2025.10.2.3
Hasan, W.N., and Aljashaami, D.H.J. (2025). Optimization of Machining Parameters in Turning to Steel Using Grey Relational Analysis. Applied Engineering Letters, 10(2), pp. 90-99.
doi: 10.46793/aeletters.2025.10.2.3.
