Journal Menu
Archive
Last Edition

Evaluating spot welds of dissimilar metals via integrated mechanical testing and finite ‎element modeling

Authors:

Kamal Abdulkareem Mohammed1
, Ahmed Ali Farhan Ogaili1
, Abdul Wahab A. Taha1
,
Ahmed Mohsin Alsayah2

1Mechanical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad 10052, Iraq
2Refrigeration & Air-condition Department, Technical Engineering College, The Islamic University, Najaf, Iraq

Received: 12 February 2025
Revised: 1 March 2025
Accepted: 18 March 2025
Published: 30 June 2025

Abstract:

This study investigates resistance spot welding of dissimilar materials, namely 37.2 ‎carbon steel, ‎‎304 stainless steel, and commercial aluminium. The effect of welding ‎parameters on nugget ‎growth, tensile shear strength, and failure modes in various ‎material combinations was ‎investigated using a combined experimental and finite element ‎modeling (FEM) approach. ‎Experimental studies included a welding current range (5-15 ‎kA) and time range (10-30 cycles), ‎complemented by tensile testing and hardness ‎measurements. It was observed that Carbon ‎Steel-Stainless Steel (CS-SS) joints ‎achieved the highest strength (9.5 kN at 9 kA), while ‎aluminium-containing joints ‎exhibited lower strengths but required higher optimal currents. ‎Hardness profiles showed ‎extensive variations across weld zones, particularly for aluminium-‎steel joints. Failure mode ‎analysis showed a prevalence of pullout failures for CS-SS joints, in ‎contrast to more ‎interfacial failures in aluminium-steel combinations. A finite element model was ‎developed ‎and validated against experimental data, showing excellent predictive capability for ‎nugget ‎size and joint strength (R²>0.96). This study contributes to the development of ‎dissimilar ‎material welding by providing new insights into parameter optimization, failure ‎‎mechanisms, and industrial application, particularly for automotive and aerospace ‎industries.‎

Keywords:

Dissimilar Metals, Tensile shear strength, Failure modes, Finite element analysis, Welding parameters

References:

[1] K. Miyamoto, S. Nakagawa, C. Sugi, H. Sakurai, A. Hirose, Dissimilar joining of aluminum alloy and steel by resistance spot welding. SAE International Journal of Materials and Manufacturing, 2(1), 2009: 58–67. https://doi.org/10.4271/2009-01-0034
[2] M. Rashid, S. Fukumoto, J.B. Medley, J. Villafuerte, Y. Zhou, Influence of lubricants on electrode life in resistance spot welding of aluminum alloys. Welding Journal, 86, 2007: 62-70.
[3] Y. Yang, Z. Luo, Y. Zhang, J. Su, Dissimilar welding of aluminium to steel: A review. Journal of Manufacturing Processes, 110, 2024: 376–397. https://doi.org/10.1016/j.jmapro.2023.12.060
[4] M. Łomozik, A. Hernas, M.L. Zeman, Effect of welding thermal cycles on the structure and properties of simulated heat-affected zone areas in X10CrMoVNb9-1 (T91) steel at a state after 100,000h of operation. Materials Science and Engineering: A, 637, 2015: 82–88. https://doi.org/10.1016/j.msea.2015.04.009
[5] J. Dong, J. Hu, Z. Luo, Quality Monitoring of Resistance Spot Welding Based on a Digital Twin. Metals, 13(4), 2023: 697. https://doi.org/10.3390/met13040697
[6] K.P. Mehta, V.J. Badheka, A Review on Dissimilar Friction Stir Welding of Copper to Aluminum: Process, Properties, and Variants. Materials and Manufacturing Processes, 31(3), 2016: 233–254.
https://doi.org/10.1080/10426914.2015.1025971
[7] M. Winnicki, A. Małachowska, M. Korzeniowski, M. Jasiorski, A. Baszczuk, Aluminium to steel resistance spot welding with cold sprayed interlayer. Surface Engineering, 34(3), 2018: 235–242.
https://doi.org/10.1080/02670844.2016.1271579
[8] K. Mori, Y. Abe, T. Kato, Mechanism of superiority of fatigue strength for aluminium alloy sheets joined by mechanical clinching and self-pierce riveting. Journal of Materials Processing Technology, 212(9), 2012: 1900–1905. https://doi.org/10.1016/j.jmatprotec.2012.04.017
[9] L. Shi, J. Xue, J. Kang, A.S. Haselhuhn, H. Ghassemi-Armaki, B.E. Carlson, Fatigue behavior of three-sheet aluminum-steel dissimilar resistance spot welds for automotive applications. Procedia Structural Integrity, 51, 2023: 102–108. https://doi.org/10.1016/j.prostr.2023.10.074
[10] J. Liu, G. Xu, X. Gu, G. Zhou, Ultrasonic test of resistance spot welds based on wavelet package analysis. Ultrasonics, 56, 2015: 557–565. https://doi.org/10.1016/j.ultras.2014.10.013
[11] R. Verma, K.S. Arora, L. Sharma, R. Chhibber, Experimental investigation on resistance spot welding of dissimilar weld joints. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(2), 2020: 505–513. https://doi.org/10.1177/0954408920968351
[12] M. Pouranvari, Critical assessment 27: Dissimilar resistance spot welding of aluminium/steel: Challenges and opportunities. Materials Science and Technology, 33(15), 2017: 1705–1712.
https://doi.org/10.1080/02670836.2017.1334310
[13] X. Kong, Q. Yang, B. Li, G. Rothwell, R. English, X.J. Ren, Numerical study of strengths of spot-welded joints of steel. Materials & Design, 29(8), 2008: 1554–1561. https://doi.org/10.1016/j.matdes.2007.12.001
[14] K. Miyamoto, S. Nakagawa, C. Sugi, H. Sakurai, A. Hirose, Dissimilar joining of aluminum alloy and steel by resistance spot welding. SAE International Journal of Materials and Manufacturing, 2(1), 2009: 58–67.
[15] P. Russo Spena, M. De Maddis, F. Lombardi, M. Rossini, Investigation on resistance spot welding of TWIP steel sheets. Steel Research International, 86(12), 2015: 1480–1489.
https://doi.org/10.1002/srin.201400336
[16] M. Pouranvari, S.P.H. Marashi, Critical review of automotive steels spot welding: process, structure and properties. Science and Technology of Welding and Joining, 18(5), 2013: 361–403.
https://doi.org/10.1179/1362171813Y.0000000120
[17] Z. Wan, H.-P. Wang, N. Chen, M. Wang, B.E. Carlson, Characterization of intermetallic compound at the interfaces of Al-steel resistance spot welds. Journal of Materials Processing Technology, 242, 2017: 12–23. https://doi.org/10.1016/j.jmatprotec.2016.11.017
[18] H. Zhang, J. Senkara, X. Wu, Suppressing cracking in resistance welding AA5754 by mechanical means. Journal of Manufacturing Science and Engineering, 124(1), 2002: 79–85. https://doi.org/10.1115/1.1418693
[19] S.K. Khanna, X. Long, 4 – Fatigue behavior of spot welded joints in steel sheets. In: X. Sun (ed.), Failure Mechanisms of Advanced Welding Processes. Woodhead Publishing, 2010: 65–100.
https://doi.org/10.1533/9781845699765.65
[20] L. Bogaerts, A. Dejans, M.G.R. Faes, D. Moens, A machine learning approach for efficient and robust resistance spot welding monitoring. Welding in the World, 67, 2023: 1923–1935.
https://doi.org/10.1007/s40194-023-01519-1
[21] S. Shin, D.-J. Park, J. Yu, S. Rhee, Resistance Spot Welding of Aluminum Alloy and Carbon Steel with Spooling Process Tapes. Metals, 9(4), 2019: 410. https://doi.org/10.3390/met9040410
[22] Y. Zhao, W. Wang, X. Wei, Optimization of Resistance Spot Welding with Inserted Strips via FEM and Response Surface Methodology. Materials, 14(23), 2021: 7489. https://doi.org/10.3390/ma14237489
[23] T. Matsukage, S. Sakurai, T. Traui, M. Iyota, Mechanical Properties of Resistance-Spot-Welded Joints of Aluminum Castings and Wrought Alloys. Engineering Proceedings, 43(1), 2023: 52.
https://doi.org/10.3390/engproc2023043052
[24] A.A.F. Ogaili, K.A. Mohammed, A.A. Jaber, A.E.S. Al, Automated wind turbines gearbox condition monitoring: A comparative study of machine learning techniques based on vibration analysis. FME Transactions, 52(3), 2024: 471–485. https://doi.org/10.5937/fme2403471O
[25] K.A. Mohammed, M.N.M. Al-Sabbagh, A.A.F. Ogaili, E.S. Al-Ameen, Experimental analysis of hot machining parameters in surface finishing of crankshaft. Journal of Mechanical Engineering Research and Developments, 43(4), 2020: 105–114.
[26] A.A.F. Ogaili, M.N. Hamzah, A.A. Jaber, Enhanced Fault Detection of Wind Turbine Using eXtreme Gradient Boosting Technique Based on Nonstationary Vibration Analysis. Journal of Failure Analysis and Prevention, 24, 2024: 877-895. https://doi.org/10.1007/s11668-024-01894-x
[27] S.A. Al-Haddad, M.Y. Fattah, T.K. Al-Azawi, L.A. Al-Haddad, Three-dimensional analysis of steel beam-column bolted connections. Open Engineering, 14(1), 2024: 20220579. https://doi.org/10.1515/eng-2022-0579
[28] M.Y. Fattah, L.A. Al-Haddad, M. Ayasrah, A.A. Jaber, S.A. Al-Haddad, Coupled Finite Element and Artificial Neural Network Analysis of Interfering Strip Footings in Saturated Cohesive Soils. Transportation Infrastructure Geotechnology, 11, 2024: 2168-2185. https://doi.org/10.1007/s40515-023-00369-0
[29] L.A. Al-Haddad, L. Ibraheem, A.I. EL-Seesy, A.A. Jaber, S.A. Al-Haddad, R. Khosrozadeh, Thermal Heat Flux Distribution Prediction in an Electrical Vehicle Battery Cell Using Finite Element Analysis and Neural Network. Green Energy and Intelligent Transportation, 3(3), 2024: 100155.
https://doi.org/10.1016/j.geits.2024.100155
[30] A.A.F. Ogaili, Q.S. Mahdi, E.S. Al-Ameen, A.A. Jaber, E.K. Njim, Finite-element investigations on the influence of material selection and geometrical parameters on dental implant performance. Curved and Layered Structures, 11(1), 2024: 20240015. https://doi.org/10.1515/cls-2024-0015
[31] Y. Wang, Z. Rao, F. Wang, Heat evolution and nugget formation of resistance spot welding under multi-pulsed current waveforms. The International Journal of Advanced Manufacturing Technology, 111, 2020: 3583–3595. https://doi.org/10.1007/s00170-020-06337-z
[32] A.A.F. Ogaili, M.N. Hamzah, A.A. Jaber, Free Vibration Analysis of a Wind Turbine Blade Made of Composite Materials. 17thInternational Middle Eastern Simulation and Modelling Conference – MESM 2022, 27 June 2022, Baghdad, Iraq, pp.203–209.
[33] P. Chigurupati, B.K. Chun, A. Bandar, W.T. Wu, Finite Element Modeling of Resistance Spot Welding Process. International Journal of Material Forming, 3, 2010: 991–994. https://doi.org/10.1007/s12289-010-0936-4
[34] H. Huang, H. Murakawa, A Selective Integration-Based Adaptive Mesh Refinement Approach for Accurate and Efficient Welding Process Simulation. Journal of Manufacturing and Materials Processing, 7(6), 2023: 206. https://doi.org/10.3390/jmmp7060206
[35] X. Sun, E.V. Stephens, M.A. Khaleel, H. Shao, M. Kimchi, Resistance Spot Welding of Aluminum Alloy to Steel with Transition Material — From Process to Performance — Part I: Experimental Study. Welding Journal, 2004: 188-195.
[36] O.S. Barrak, S. Ben-Elechi, S. Chatti, Parameters influence on mechanical properties of resistance spot welding: AISI304L/AISI1005. Pollack Periodica, 2024. https://doi.org/10.1556/606.2024.01142
[37] V.H. Baltazar Hernandez, S.K. Panda, Y. Okita, N.Y. Zhou, A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation. Journal of Materials Science, 45, 2010: 1638–1647. https://doi.org/10.1007/s10853-009-4141-0
[38] M. Sun, S.T. Niknejad, H. Gao, L. Wu, Y. Zhou, Mechanical properties of dissimilar resistance spot welds of aluminum to magnesium with Sn-coated steel interlayer. Materials & Design, 91, 2016: 331–339. https://doi.org/10.1016/j.matdes.2015.11.121
[39] M. Ghosh, K. Kumar, R.S. Mishra, Analysis of microstructural evolution during friction stir welding of ultrahigh-strength steel. Scripta Materialia, 63(8), 2010: 851–854.
https://doi.org/10.1016/j.scriptamat.2010.06.032
[40] A.A.F. Ogaili, A. AbdulhadyJaber, M.N. Hamzah, Statistically Optimal Vibration Feature Selection for Fault Diagnosis in Wind Turbine Blade. International Journal of Renewable Energy Research, 13(3), 2023: 1082–1092. https://doi.org/10.20508/ijrer.v13i3.14096.g8782
[41] D.W. Zhao, Y.X. Wang, L. Zhang, P. Zhang, Effects of electrode force on microstructure and mechanical behavior of the resistance spot welded DP600 joint. Materials & Design, 50, 2013: 72–77.
https://doi.org/10.1016/j.matdes.2013.02.016
[42] M.M. Hamzah, O.S. Barrak, I.T. Abdullah, A.A. Hussein, S.K. Hussein, Process Parameters Influence the Mechanical Properties and Nugget Diameter of AISI 316 Stainless Steel During Resistance Spot Welding. International Journal of Applied Mechanics and Engineering, 29(2), 2024: 79–89.
https://doi.org/10.59441/ijame/186956

© 2025 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 2
June 2025

Loading

Last Edition

Volume 10
Number 2
June 2025

How to Cite

K. Abdulkareem Mohammed, A.A.F. Ogaili, A.W. A. Taha, A.M. Alsayah, Evaluating Spot Welds of Dissimilar Metals via Integrated Mechanical Testing and Finite ‎Element Modeling. Applied Engineering Letters, 10(2), 2025: 77-89.
https://doi.org/10.46793/aeletters.2025.10.2.2

More Citation Formats

Abdulkareem Mohammed, K., Ogaili, A.A.F., Taha, A.W. A., & Alsayah, A.M. (2025). Evaluating Spot Welds of Dissimilar Metals via Integrated Mechanical Testing and Finite ‎Element Modeling. Applied Engineering Letters, 10(2), 77-89.
https://doi.org/10.46793/aeletters.2025.10.2.2

Abdulkareem Mohammed, Kamal, et al. “Evaluating Spot Welds of Dissimilar Metals via Integrated Mechanical Testing and Finite ‎Element Modeling.“ Applied Engineering Letters, vol. 10, no. 2, 2025, pp. 77-89.
https://doi.org/10.46793/aeletters.2025.10.2.2

Abdulkareem Mohammed, Kamal, Ahmed Ali Farhan Ogaili, Abdul Wahab A. Taha, and Ahmed Mohsin Alsayah. 2025. “Evaluating Spot Welds of Dissimilar Metals via Integrated Mechanical Testing and Finite ‎Element Modeling.“ Applied Engineering Letters, 10 (2): 77-89.
https://doi.org/10.46793/aeletters.2025.10.2.2

Abdulkareem Mohammed, K., Ogaili, A.A.F., Taha, A.W. A., and Alsayah, A.M. (2025). Evaluating Spot Welds of Dissimilar Metals via Integrated Mechanical Testing and Finite ‎Element Modeling. Applied Engineering Letters, 10(2), pp. 77-89.
doi: 10.46793/aeletters.2025.10.2.2.

Using lean manufacturing to improve process efficiency in a fabrication company

Authors:

Andra Maria Popa1
, Kapil Gupta1
1University of Johannesburg, Mechanical and Industrial Engineering Technology, Johannesburg, South Africa

Received: 29 June 2024
Revised: 20 September 2024
Accepted: 26 September 2024
Published: 30 September 2024

Abstract:

This article presents a case study on improving process efficiency in a mining equipment part fabrication company. The company was facing issues concerning communication, organisation, and workflow processes. This study investigated that ineffective communication among departments was the major weakness which was responsible for the long lead or idle time. This lead time was a waste that affected the company’s productivity. A great amount of time was spent on non-value-added processes. The Kanban Centralised Communication System was implemented. Time study and value stream mapping were also used. A significant improvement in process efficiency from 34% to 85% was achieved by reducing lead time from 4200 minutes to 1680 minutes after streamlining the communication in the company using Kanban.

Keywords:

Lean manufacturing, Kanban, Optimization, Process efficiency, Production lead time, Value stream mapping

References:

[1] A. Belhadi, F.E. Touriki, S. Elfezazi, Evaluation of critical success factors (CSFs) to implement Lean implementation in SMES using AHP: A case study. International Journal of Lean Six Sigma, 10(3), 2019: 803-829. https://doi.org/10.1108/IJLSS-12-2016-0078
[2] K.S. Minh, S. Zailani, M. Iranmanesh, S. Heidari, Do lean manufacturing practices have a negative impact on job satisfaction. International Journal of Lean Six Sigma, 10(1), 2019: 257-274. https://doi.org/10.1108/IJLSS-11-2016-0072
[3] K. Das, M. Dixon, Lean manufacturing and service. CRC Press, Boca Raton, 2024. https://doi.org/10.1201/9781003121688
[4] S. Gupta, P. Chanda, A case study concerning the 5S Lean technique in a scientific equipment manufacturing company. Grey Systems: Theory and Application, 10(3), 2020:339-357. https://doi.org/10.1108/GS-01-2020-0004
[5] J.P. Davim, Progress in Lean Manufacturing. Springer Cham, 2018. https://doi.org/10.1007/978-3-319-73648-8
[6] L. Dubey, K. Gupta, Lean manufacturing based space utilization and motion waste reduction for efficiency enhancement in a machining shop: A case study. Applied Engineering Letters, 8(3), 2023: 121-130. https://doi.org/10.18485/aeletters.2023.8.3.4
[7] Y. Shi, X. Wang, X. Zhu, Lean manufacturing and productivity changes: the moderating role of R&D. International Journal of Productivity and Performance Management, 69(1), 2019:169-191. https://doi.org/10.1108/IJPPM-03-2018-0117
[8] S. Sahoo, S. Yadav, Lean implementation in small- and medium-sized enterprise. Benchmarking: An International Journal, 25(4), 2018: 1121-1147. https://doi.org/10.1108/BIJ-02-2017-0033
[9] S. Caceres-Gelvez, M.D. Arango-Serna, J.A. Zapata-Cortes, Evaluating the performance of a cellular manufacturing system proposal for sewing department of a sportswear manufacturing company: A simulation approach. Journal of Applied Research and Technology, 20(1), 2022: 68-83. https://doi.org/10.22201/icat.24486736e.2022.20.1.1335
[10] H.H. Berhe, Application of Kaizen philosophy for enhancing manufacturing industries’ performance: exploratory study of Ethiopian chemical industries. International Journal of Quality & Reliability Management, 39(1),2022: 204-235. https://doi.org/10.1108/IJQRM-09-2020-0328
[11] C. Hemalatha, K. Sankaranarayanasamy, N. Durairaaj, Lean and agile manufacturing for work-in-process (WIP) control. Materials Today Proceedings, 46(20), 2021: 10334-10338. https://doi.org/10.1016/j.matpr.2020.12.473
[12] J. Singh, H. Singh, A. Singh, J. Singh, Managing industrial operations by Lean thinking using value stream mapping and six sigma in manufacturing unit. Management Decision, 58(6), 2019: 1118-1148. https://doi.org/10.1108/MD-04-2017-0332
[13] C. Veres, L. Marian, M.S. Moica, K. Al-Akel, Case study concerning 5S method impact in an automotive company. Procedia Manufacturing, 22, 2018: 900-905. https://doi.org/10.1016/j.promfg.2018.03.127
[14] J.C-C. Chen, C.-Y. Cheng, Solving social loafing phenomenon through Lean-Kanban: A case study in non-profit organization. Journal of Organizational Change Management, 31(5), 2017: 984-1000. https://doi.org/10.1108/JOCM-12-2016-0299
[15] T. Bandoophanit, S. Pumprasert, The paradoxes of just-in-time system: an abductive analysis of a public food manufacturing and exporting company in Thailand. Management Research Review, 45(8), 2022: 1019-1043 https://doi.org/10.1108/MRR-04-2021-0262
[16] S. Gawande, J.S. Karajgikar, Implementation of Kanban, a Lean tool, In Switchgear Manufacturing Industry – A Case Study. Proceedings of the International Conference on Industrial Engineering and Operations Management, July 26-27, 2018, Paris, France, 2335-2348.
[17] M.A. Habib, R. Rizvan, S. Ahmed, Implementing Lean manufacturing for improvement of operational performance in a labeling and packaging plant: A case study in Bangladesh. Results in Engineering, 17, 2023:100818. https://doi.org/10.1016/j.rineng.2022.100818
[18] A.K. Das, M.C. Das, Productivity improvement using different Lean approaches in small and medium enterprises (SMEs). Management Science Letters, 13, 2023: 51-64. https://doi.org/10.5267/j.msl.2022.9.002
[19] P.A. Marques, D. Jorge, J. Reis, Using Lean to Improve Operational Performance in a Retail Store and E-Commerce Service: A Portuguese Case Study. Sustainability, 14(10), 2022: 5913. https://doi.org/10.3390/su14105913
[20] F. Khair, M. A. S. Putra, I. Rizkia, Improvement and analysis of aircraft maintenance flow process using Lean manufacturing, PDCA, PICA, and VSM for sustainable operation system. IOP Conf. Series: Earth and Environmental Science, 1324, 2024: 012071. https://doi.org/10.1088/17551315/1324/1/012071
[21] I. Rizkya, K. Syahputri, R.M. Sari, D.S. Situmorang, Lean Manufacturing: Waste Analysis in Crude Palm Oil Process. IOP Conference Series: Materials Science and Engineering, 851, 2020: 012058. https://doi.org/10.1088/1757-899X/851/1/012058
[22] A. Pradeep, K. Balaji, Reduction of lead time in an automobile rubber component manufacturing process through value stream mapping. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(6), 2022:2470-2479. https://doi.org/10.1177/09544089221094094
[23] D. Cabezas, I. Muelle, E. Avalos-Ortecho, Implementation of Lean Manufacturing to Increase the Machine’s Availability of a Metalworking Company. 7 th North American International Conference on Industrial Engineering and Operations Management, June 12-14, 2022, Orlando, Florida, USA.
[24] W. Kosasih, I.K. Sriwana, E.C. Sari, C.O. Doaly, Applying value stream mapping tools and kanban system for waste identification and reduction (case study: a basic chemical company). IOP Conference Series: Materials Science and Engineering, 528, 2019: 012050. https://doi.org/10.1088/1757-899X/528/1/012050
[25] B.S. Patel, M. Sambasivan, R. Panimalar, R. Krishna, A relationship analysis of drivers and barriers of Lean manufacturing. The TQM Journal, 34(5), 2022: 845-876. https://doi.org/10.1108/TQM-12-2020-0296

© 2024 by the author. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 2
June 2025

Loading

Last Edition

Volume 10
Number 2
June 2025

How to Cite

V.H. Quan, Research and Optimization of Sport Utility Vehicle Aerodynamic Design. Applied Engineering Letters, 9(2), 2024: 105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

More Citation Formats

Quan, V.H. (2024). Research and Optimization of Sport Utility Vehicle Aerodynamic Design. Applied Engineering Letters, 9(2), 105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

Quan, Vu Hai, “Research and Optimization of Sport Utility Vehicle Aerodynamic Design.“ Applied Engineering Letters, vol. 9, no. 2, pp. 2024, 105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

Quan, Vu Hai, 2024. “Research and Optimization of Sport Utility Vehicle Aerodynamic Design.“ Applied Engineering Letters, 9 (2):105-115.
https://doi.org/10.46793/aeletters.2024.9.2.5

Quan, V.H. (2024). Research and Optimization of Sport Utility Vehicle Aerodynamic Design. Applied Engineering Letters, 9(2), pp. 105-115.
doi: 10.46793/aeletters.2024.9.2.5.

live macau
live macau 5D
live macau
live macau
live macau
live macau
live sdy lotto
Live sdy
Live hk lotto
Live hk lotto
Live china
Live japan
Live Draw Sgp
Live taiwan
Live taiwan
Live cambodia
Live cambodia
situs toto
jatimtoto
jatimtoto
jatim toto
bandar toto macau
cheat slot
bandar toto macau
paito macau
paito sydney
paito singapore
paito hk
roulette
slot77
rtp slot gacor hari ini
slot deposit via qris
demo slot majong ways
rtp slot gacor hari ini