Jurnal Menu
Archive
Last Edition

TRIBOLOGICAL PROPERTIES OF ALUMINIUM MATRIX NANOCOMPOSITES

Authors:

Sandra Veličković1

, Slobodan Garić1, Blaža Stojanović1, Aleksandar Vencl2

1Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia
2Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia

Received: 15 August 2016
Accepted: 03 September 2016
Available online: 30 September 2016

Abstract:

The paper provides an overview of tribological properties of nanocomposites with aluminium matrix. Nanocomposites represent a new generation of composite materials with better properties than conventional composite materials. The paper presents and explains the most common methods of nanocomposites production. In addition, the overview of tribological properties is presented through the equipment used for testing; amount, size and type of reinforcement; matrix material and manufacturing process; and test conditions.

Keywords:

Aluminium, nanocomposites, manufacturing process, tribological properties

References:

[1] B.Ž. Stojanović, Tribological Behaviour of Hybrid Composites with A356 Matrix (Ph.D. Thesis), Faculty of Engineering, University of Kragujevac, Kragujevac, 2013, (in Serbian).
[2] A.A. Vencl, The Research of the Al-Si Alloys Tribological Properties Improvement Possibilities in Sliding Conditions (Ph.D. Thesis), Faculty of Mechanical Engineering, University of Belgrade, Belgrade, 2007, (in Serbian).
[3] M.K. Surappa, Aluminium matrix composites: Challenges and opportunities, Sādhanā, 28 (1-2), 2003: 319–334.
[4] D.B. Miracle, Metal matrix composites – From science to technological significance, Compos. Sci. Technol., 65 (15-16), 2005: 2526–2540.
[5] S.V. Prasad, R. Asthana, Aluminium metalmatrix composites for automotive applications: Tribological considerations, Tribol. Lett., 17 (3), 2004: 445–453.
[6] A. Vencl, Tribology of the Al-Si Alloy Based MMCs and Their Application in Automotive Industry, in: L. Magagnin (Ed.), Engineered Metal Matrix Composites: Forming Methods, Material Properties and Industrial Applications, Nova Science Publishers, New York, 2012, pp.127–166.
[7] B. Stojanović, L. Ivanović, Application of aluminium hybrid composites in automotive industry, Teh. Vjesn., 22 (1), 2015: 247–251.
[8] B. Stojanovic, J. Glisovic, Automotive Engine Materials, in: S. Hashmi (Ed.), Reference Module in Materials Science and Materials Engineering, Elsevier, Oxford, 2016, pp.1–9.
[9] A. Vencl, A. Rac, I. Bobić, Tribological behaviour of Al-based MMCs and their application in automotive industry, Tribol. Ind., 26 (3-4), 2004: 31–38.
[10] A. Vencl, A. Rac, New wear resistant Al based materials and their application in automotive industry, Mobility & Vehicles Mechanics (MVM), 30 (Special Edition), 2004: 115–139.
[11] A. Elmarakbi (Ed.), Advanced Composite Materials for Automotive Applications, John Wiley & Sons, Chichester, 2014.
[12] European Aluminium Association, Aluminium in Cars – Unlocking the Light-Weighting Potential, European Aluminium Association, Brussels, 2013.
[13] J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China, 24 (7), 2014: 1995−2002.
[14] K.U. Kainer (Ed.), Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering, Wiley, Weinheim, 2006.
[15] M. Al Mehedi, Aluminium matrix composites in automotive application, Aluminium, 87 (7-8), 2011: 55–57.
[16] A. Vencl, I. Bobić, S. Arostegui, B. Bobic, A. Marinković, M. Babić, Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC + graphite particles, J. Alloys Compd., 506 (2), 2010: 631–639.
[17] B. Stojanovic, M. Babic, S. Mitrovic, A. Vencl, N. Miloradovic, M. Pantic, Tribological characteristics of aluminium hybrid composites reinforced with silicon carbide and graphite. A review, J. Balk. Tribol. Assoc., 19 (1), 2013: 83–96.
[18] M. Babić, B. Stojanović, S. Mitrović, I. Bobić, N. Miloradović, M. Pantić, D. Džunić, Wear properties of A356/10SiC/1Gr hybrid composites in lubricated sliding conditions, Tribol. Ind., 35 (2), 2013: 148–154.
[19] E.M. Sharifi, F. Karimzadeh, Wear behaviour of aluminium matrix hybrid nanocomposites fabricated by powder metallurgy, Wear, 271 (7-8), 2011: 1072–1079.
[20] M.T. Khorshid, E. Omrani, P.L. Menezes, P.K. Rohatgi, Tribological performance of selflubricating aluminium matrix nanocomposites: Role of graphene nanoplatelets, Eng. Sci. Technol., Int. J., 19 (1), 2016: 463–469.
[21] A.V. Muley, S. Aravindan, I.P. Singh, Mechanical and tribological studies on nano particles reinforced hybrid aluminium based composite, Manuf. Rev., 2, 2015: 1–9.
[22] R. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles – A review, Metals, 4 (1), 2014: 65–83.
[23] C.D. Marini, N. Fatchurrohman, A review on the fabrication techniques of aluminium matrix nanocomposites, J. Teknologi, 74 (10), 2015: 103–109.
[24] Z.Y. Ma, Friction stir processing technology: A review, Metall. Mater. Trans., A 39 (3), 2008: 642–658.
[25] S.R. Anvari, F. Karimzadeh, M.H. Enayati, Wear characteristics of Al-Cr-O surface nanocomposite layer fabricated on Al6061 plate by friction stir processing, Wear, 304 (1-2), 2013: 144–151.
[26] P. Ravindran, K. Manisekar, S. Vinoth Kumar, P. Rathika, Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant, Mater. Design, 51, 2013: 448–456.
[27] N. Nemati, R. Khosroshahi, M. Emamy, A. Zolriasatein, Investigation of microstructure, hardness and wear properties of Al-4.5 wt.% Cu–TiC nanocomposites produced by mechanical milling, Mater. Design, 32 (7), 2011: 3718–3729.
[28] M.K. Abbass, M.J. Fouad, Study of wear behavior of aluminum alloy matrix nanocomposites fabricated by powder technology, Eng. Technol. J., 32 (7), 2014: 1720–1732.
[29] A. Alizadeh, A. Abdollahi, H. Biukani, Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C), J. Alloys Compd., 650, 2015: 783–793.
[30] D. Jeyasimman, R. Narayanasamy, R. Ponalagusamy, V. Anandakrishnan, M. Kamaraj, The effects of various reinforcements on dry sliding wear behaviour of AA 6061 nanocomposites, Mater. Design, 64, 2014: 783–793.
[31] B. Yazdani, F. Xu, I. Ahmad, X. Hou, Y. Xia, Y. Zhu, Tribological performance of graphene/carbon nanotube hybrid reinforced Al2O3 composites, Sci. Rep., 5, 2015: 11579.
[32] A. Mostafapour Asl, S.T. Khandani, Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method, Mater. Sci. Eng., A 559, 2013: 549–557.
[33] R. Maurya, B. Kumar, S. Ariharan, J. Ramkumar, K. Balani, Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy, Mater. Design, 98, 2016: 155–166.
[34] R. Vatankhah Barenji, V.M. Khojastehnezhad, H.H. Pourasl, A. Rabiezadeh, Wear properties of Al-Al2O3/TiB2 surface hybrid composite layer prepared by friction stir process, J. Compos. Mater., 50 (11), 2016: 1457–1466.
[35] H. Eskandari, R. Taheri, F. Khodabakhshi, Friction-stir processing of an AA8026-TiB2- Al2O3 hybrid nanocomposite: Microstructural developments and mechanical properties, Mater. Sci. Eng., A 660, 2016: 84–96.
[36] A. Lekatou, A.E. Karantzalis, A. Evangelou, V. Gousia, G. Kaptay, Z. Gácsi, P. Baumli, A. Simon, Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour, Mater. Design, 65, 2015: 1121– 1135.
[37] A. Dorri Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi, Effect of in-situ processing parameters on the mechanical and tribological properties of self-lubricating hybrid aluminum nanocomposites, Tribol. Lett., 62 (2), 2016: 2- 10.
[38] M. Karbalaei Akbari, S. Rajabi, K. Shirvanimoghaddam, H.R. Baharvandi, Wear and friction behavior of nanosized TiB2 and TiO2 particle-reinforced casting A356 aluminum nanocomposites: A comparative study focusing on particle capture in matrix, J. Compos. Mater., 49 (29), 2015: 3665–3681.
[39] K.K. Ekka, S.R. Chauhan, Varun, Dry sliding wear characteristics of SiC and Al2O3 nanoparticulate aluminium matrix composite using Taguchi technique, Arab. J. Sci. Eng., 40 (2), 2015: 571–581.
[40] I.E. Kalashnikov, L.K. Bolotova, L.I. Kobeleva, P.A. Bykov, A.G. Kolmakov, Wear products that form during tribological tests of aluminum-matrix composite materials, Russ. Metall., 2015 (4), 2015: 285–289.
[41] J.S.S. Babu, C.G. Kang, H.H. Kim, Dry sliding wear behaviour of aluminium based hybrid composites with graphite nanofiber-alumina fiber, Mater. Design, 32 (7), 2011: 3920–3925.
[42] S.C. Lim, Recent developments in wear mechanism maps, Tribol. Int., 31 (1-3), 1998: 87–97.
[43] D.Z. Wang, H.X. Peng, J. Liu, C.K. Yao, Wear behaviour and microstructural changes of SiCw-Al composite under unlubricated sliding friction, Wear, 184 (2), 1995: 187–192.
[44] S. Wilson, A.T. Alpas, Wear mechanism maps for metal matrix composites, Wear, 212 (1), 1997: 41–49.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 3
September 2025

Loading

Last Edition

Volume 10
Number 3
September 2025

How to Cite

S. Veličković, S. Garić, B. Stojanović, A. Vencl, Tribological Properties of Aluminium Matrix Nanocomposites. Applied Engineering Letters, 1(3), 2016: 72-79.

More Citation Formats

Veličković, S., Garić, S., Stojanović, B., & Vencl, A. (2016). Tribological Properties of Aluminium Matrix Nanocomposites. Applied Engineering Letters, 1(3), 72-79.

Veličković, Sandra. et al. “Tribological Properties of Aluminium Matrix Nanocomposites.“ Applied Engineering Letters, vol. 1, no. 3, 2016, pp. 72-79.

Veličković, Sandra, Slobodan Garić, Blaža Stojanović, and Aleksandar Vencl. “Tribological Properties of Aluminium Matrix Nanocomposites.“ Applied Engineering Letters, 1 (3):72-79.

Veličković, S., Garić, S., Stojanović, B. and Vencl, A. (2016). Tribological Properties of Aluminium Matrix Nanocomposites. Applied Engineering Letters, 1(3), pp. 72-79.

TRIBOLOGICAL PROPERTIES OF ALUMINIUM MATRIX NANOCOMPOSITES

Authors:

Sandra Veličković1

, Slobodan Garić1, Blaža Stojanović1, Aleksandar Vencl2

1Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia
2Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia

Received:15.08.2016.
Accepted: 03.09.2016.
Available online: 30.09.2016.

Abstract:

The paper provides an overview of tribological properties of nanocomposites with aluminium matrix. Nanocomposites represent a new generation of composite materials with better properties than conventional composite materials. The paper presents and explains the most common methods of nanocomposites production. In addition, the overview of tribological properties is presented through the equipment used for testing; amount, size and type of reinforcement; matrix material and manufacturing process; and test conditions.

Keywords:

Aluminium, nanocomposites, manufacturing process, tribological properties

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 3
September 2025

Loading

Last Edition

Volume 10
Number 3
September 2025