ISSN 2466-4677; e-ISSN 2466-4847
SCImago Journal Rank
2024: SJR=0.300
CWTS Journal Indicators
2024: SNIP=0.77
CHARACTERIZATION OF PRECIPITATES FORMED IN THE ALUMINUM ALLOY WITH ANTIMONY
Authors:
Krzysztof Matuš1
, Klaudiusz Gołombek1, Peter Palček2, Paulina Boryło1
1Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
2Department of Materials Science, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, Žilina 010 26, Slovak Republic
Received: 23 February 2017
Accepted: 22 March 2017
Available: 30 March 2017
Abstract:
The aim of the article was to identify and characterize the precipitates formed in the aluminum alloys with the addition of antimony. The performed investigation was on the casting aluminium alloy based on ENACAlMg5Si2Mn (ENAC-51500) used in the automotive industry with the addition of antimony in an amount of 0.2 % for the first sample and 1.2 % for the second one. The main research technique was scanning electron microscopy, in order to evaluate the morphology and precipitates in the investigated samples, the backscattered electrons were used. Performed research allowed to determine the effect of the addition of antimony on the morphology of formed precipitates.
Keywords:
Aluminium alloy, Precipitates, SEM, Morphology
References:
[1] C. Cayron, P.A. Buffat, Transmission electron microscopy study of the β′ phase (Al–Mg–Si alloys) and QC phase (Al–Cu–Mg–Si alloys): ordering mechanism and crystallographic structure. Acta Materialia, 48 (10), 2000: pp.2639-2653. doi:10.1016/S1359-6454(00)00057-4.
[2] D.J. Chakrabarti, D.E. Laughlin, Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Progress in Materials Science, 49 (3-4), 2004: pp.389-410. doi:10.1016/S0079-6425(03)00031-8.
[3] N. Chomsaeng, M. Harutal, HRTEM and ADFSTEM of precipitates at peak-ageing in cast A356 aluminium alloy. Journal of Alloys and Compounds, 496 (1-2), 2010: pp.478-487. doi:10.1016/j.jallcom.2010.02.084.
[4] A.K. Gupta, D.J. Lloyd, Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Materials Science and Engineering: A, 316 (1-2), 2001: pp.11-17. doi:10.1016/S0921-5093(01)01247-3.
[5] K. Teichmann, C.D. Marioara, TEM study of β′ precipitate interaction mechanisms with dislocations and β′ interfaces with the aluminium matrix in Al–Mg–Si alloys. Materials Characterization, 75 (-), 2013: pp.1-7. doi:10.1016/j.matchar.2012.10.003.
[6] T. Petkov, D. Künstner, Erweiterung des Eigenschaftspotentials der Legierung Al Mg5Si2Mn durch eine gezielte Wärmebehandlung. BHM Berg- Hüttenmänn Monatshefte, 158 (3), 2013: pp.104-112. doi:10.1007/s00501-013-0108-1.
[7] A.L. Garcia-Garcia, I. Dominguez-Lopez, Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM. Materials Characterization, 87 (-), 2014, pp.116-124. doi:10.1016/j.matchar.2013.11.007.
[8] N.K. Mukhopadhyay, H.J. Chang, Electron microscopy of an icosahedral phase in a rapidly solidified Al18Mg3Mn2 complex metallic alloy. Scripta Materialia, 59 (10), 2008: pp.1119-1122. doi:10.1016/j.scriptamat.2008.07.024.
[9] A. Biswas, D.J. Siegel, Compositional evolution of Q-phase precipitates in an aluminum alloy. Acta Materialia, 75 (-), 2014: pp.322-336. doi:10.1016/j.actamat.2014.05.001.
[10] Z. Hu, L. Wan, Microstructure and mechanical properties of high strength die-casting Al– Mg–Si–Mn alloy. Materials & Design, 46 (-), 2013: pp.451–456. doi:10.1016/j.matdes.2012.10.020.
[11] J. Aguilar, M. Fehlbier, Non-equilibrium globular microstructure suitable for semisolid casting of light metal alloys by rapid slug cooling technology (RSCT). Materials Science and Engineering: A, 375-377 (-), 2004: pp.661-665. doi:10.1016/j.msea.2003.10.091.
[12] W.M. Lee, M.A. Zikry, High strain-rate modeling of the interfacial effects of dispersed particles in high strength aluminum alloys. International Journal of Solids and Structures, 49 (23-24), 2012: pp.3291-3300. doi:10.1016/j.ijsolstr.2012.07.003.
[13] J.F. Nie, B.C. Muddle, On the form of the agehardening response in high strength aluminium alloys, Materials Science and Engineering: A, 319-321 (-), 2001: pp.448-451. doi:10.1016/S0921-5093 (01)01054-1.
[14] A. Almeida, R. Vilar, Al–Al7Cr eutectic in Al–Cr alloys synthesized by laser alloying. Scripta Materialia, 63 (8), 2010: pp.811-814. doi:10.1016/j. scripta mat.2010.06.022.
[15] J.C. Betts, Laser surface modification of aluminium and magnesium alloys. In: Dong H, editor. Surf. Eng. Light Alloys, Woodhead Publishing Limited, Oxford, 2010: pp.444-474.
[16] L. He, Y. Tan, Tribological properties of WC and CeO2 particles reinforced in-situ synthesized NiAl matrix composite coatings at elevated temperature. Surface and Coatings Technology, 244 (-), 2014: pp.123-130. doi:10.1016/ j.surfcoat. 2014.01.048.
[17] C. Hu, T.N. Baker, A new aluminium silicon carbide formed in laser processing. Journal of Materials Science, 32 (19), 1997: pp.5047- 5051. doi:10.1023/ A: 1018653030270.
[18] H.C. Man, C.T. Kwok, Cavitation erosion and corrosion behavior of laser surface alloyed MMC of SiC and Si3N4 on Al alloy AA6061. Surface and Coatings Technology, 132 (1), 2000: pp.11-20. doi:10.1016/S0257-8972(00)00729-5.
[19] H.C. Man, Y.Q. Yang, Laser induced reaction synthesis of TiC+WC reinforced metal matrix composites coatings on Al 6061. Surface and Coatings Technology, 185 (1), 2004: pp.74-80. doi:10.1016/j. surfcoat.2003.10.132.
[20] S. Nath, S. Pityana, Laser surface alloying of aluminium with WC + Co + NiCr for improved wear resistance. Surface and Coatings Technology, 206 (15), 2012: pp.3333-3341. doi:10.1016/j.surfcoat. 2012. 01.038.
[21] H.V. Pokhmurs’ka, M.M. Student, Structure and Properties of Aluminum Alloys Modified with Silicon Carbide by Laser Surface Treatment. Materials Science, 41 (3), 2005: pp.316-323. doi:10.1007/s11003-005-0168-9.
[22] M.M. Barzani, A.A.D. Sarhan, S. Farahany, S. Ramesh, I. Maher, Investigating the Machinability of Al–Si–Cu cast alloy containing bismuth and antimony using coated carbide insert. Measurement, 62 (-), 2015: pp170-178. doi.org/10.1016/j.measurement.2014.10.030
[23] F. Delmas, F., M.J. Casanove, P. Lours, A. Couret, A. Coujou, Quantitative TEM study of the precipitation microstructure in aluminium alloy Al(MgSiCu) 6056 T6. Materials Science and Engineering: A, 373 (1-2), 2004: pp.80-89. doi.org/10.1016/j.msea.2003.12.068
[24] S. Farahany, A. Ourdjini, M.H. Idris, S.G. Shabestari, Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis. Thermochimica Acta, 559 (-), 2013: pp.59-68. doi.org/10.1016/j.tca.2013.02.024
[25] S. Farahany, M.H. Idris, A. Ourdjini, Evaluations of antimony and strontium interaction in an Al–Si–Cu–Zn die cast alloy. Thermochimica Acta, 584 (-), 2014: pp.72-78. doi.org/10.1016/j.tca.2014.04.001
[26] A.L. Garcia-Garcia, I. Dominguez-Lopez, L. Lopez-Jimenez, J.D.O. Barceinas-Sanchez, Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM. Materials Characterization, 87 (-), 2014: pp.116-124. doi.org/10.1016/j.matchar.2013.11.007
[27] A.K.P. Rao, K. Das, B.S. Murty, M. Chakraborty, On the modification and segregation behavior of Sb in Al–7Si alloy during solidification. Materials Letters 62 (12-13), 2008: pp.2013-2016. doi.org/10.1016/j.matlet.2007.11.005
[28] B. Xiufang, W. Weimin, Q. Jingyu, Liquid structure of Al–12.5% Si alloy modified by antimony. Materials Characterization, 46 (1), 2001: pp.25-29. doi.org/10.1016/S1044-5803(00)00089-9
[29] C.-Y. Yang, S.-L. Lee, C.-K. Lee, J.-C Lin, Effects of Sr and Sb modifiers on the sliding wear behavior of A357 alloy under varying pressure and speed conditions. Wear, 261 (11-12), 2006: pp.1348-1358. doi.org/10.1016/j.wear.2006.03.051
[30] W. Yang, S. Ji, M. Wang, Z. Li, Precipitation behavior of Al–Zn–Mg–Cu alloy and diffraction analysis from η′ precipitates in four variants. Journal of Alloys and Compounds, 610 (-), 2014: pp.623-629. doi.org/10.1016/j.jallcom.2014.05.061
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
K. Matuš, K. Gołombek, P. Palček, P. Boryło, Characterization of Precipitates Formed in the Aluminum Alloy With Antimony. Applied Engineering Letters, 2(1), 2017: 22-26.
More Citation Formats
Matuš, K., Gołombek, K., Palček, P., & Boryło, P. (2017). Characterization of Precipitates Formed in the Aluminum Alloy With Antimony. Applied Engineering Letters, 2(1), 22-26.
Matuš, Krzysztof, et al. “Characterization of Precipitates Formed in the Aluminum Alloy With Antimony.“ Applied Engineering Letters, vol. 2, no. 1, 2017, pp. 22-26.
Krzysztof, Klaudiusz Gołombek, Peter Palček, and Paulina Boryło. 2017. “Characterization of Precipitates Formed in the Aluminum Alloy With Antimony.“ Applied Engineering Letters, 2 (1): 22-26.
Matuš, K., Gołombek, K., Palček, P. and Boryło, P. (2017). Characterization of Precipitates Formed in the Aluminum Alloy With Antimony. Applied Engineering Letters, 2(1), pp. 22-26.
SCImago Journal Rank
2024: SJR=0.300
CWTS Journal Indicators
2024: SNIP=0.77
CHARACTERIZATION OF PRECIPITATES FORMED IN THE ALUMINUM ALLOY WITH ANTIMONY
Authors:
Krzysztof Matuš1
, Klaudiusz Gołombek1, Peter Palček2, Paulina Boryło1
1Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
2Department of Materials Science, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, Žilina 010 26, Slovak Republic
Received: 23.02.2017.
Accepted: 22.03.2017.
Available: 30.03.2017.
Abstract:
The aim of the article was to identify and characterize the precipitates formed in the aluminum alloys with the addition of antimony. The performed investigation was on the casting aluminium alloy based on ENACAlMg5Si2Mn (ENAC-51500) used in the automotive industry with the addition of antimony in an amount of 0.2 % for the first sample and 1.2 % for the second one. The main research technique was scanning electron microscopy, in order to evaluate the morphology and precipitates in the investigated samples, the backscattered electrons were used. Performed research allowed to determine the effect of the addition of antimony on the morphology of formed precipitates.
Keywords:
Aluminium alloy, Precipitates, SEM, Morphology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)