ISSN 2466-4677; e-ISSN 2466-4847
SCImago Journal Rank
2024: SJR=0.300
CWTS Journal Indicators
2024: SNIP=0.77
CRITICAL ANALYSIS OF DESIGN OF RAVIGNEAUX PLANETARY GEAR TRAINS
Authors:
Milan Stanojević1
, Radoslav Tomović2, Lozica Ivanović1, Blaža Stojanović1
1University of Kragujevac, Faculty of Engineering, Kragujevac, Serbia
2University of Montenegro, Faculty of Mechanical Engineering, Podgorica, Montenegro
Received: 28.12.2021.
Accepted: 08.02.2022.
Available: 31.03.2022.
Abstract:
Planetary gear trains have been applied for a long time in the automotive industry as an irreplaceable part of automatic gearboxes. This paper presents, based on existing research, the kinematic analysis and evaluation of Ravigneaux gear trains, effects of power flow analysis and power loss, evaluation of utility effects of energy utilization through analysis of efficiency. It also illustrates research topics that analyse technical challenges of understanding and predicting dynamics and vibrations of planetary gear trains in the process of design of their configuration, optimization of given gear trains in reference to set criteria and affirmation of validity of their constructions by prototyping and prototype testing on the test stand.
Keywords:
Planetary gear train, kinematic analysis, efficiency, Ravigneaux gearset, automatic gearbox
References:
[1] US patent 2749775A, Howard Simpson, Planetary transmission for self-propelled vehicle, published 1956-06-12, No.1956-06-12.
[2] J. M. del Castillo, Symbolic computation of planetary gear train efficiency, European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000, Barselona, 2000.
[3] G. del Pio, E. Pennestrì, P. P. Valentini, Kinematic and power-flow analysis of bevel gears planetary gear trains with gyroscopic complexity. Mechanism and Machine Theory, 70, 2013: 523-537.
http://dx.doi.org/10.1016/j.mechmachtheory.2013.08.016
[4] H. A. Hussen, E. L. Esmail, R. A. Hussen, Power Flow Simulation for Two-Degree-of-Freedom Planetary Gear Transmissions with Experimental Validation. Modelling and Simulation in Engineering, 2020 (6), 2020:8837605. https://doi.org/10.1155/2020/8837605
[5] E. Pennestrı, P. P. Valentini, A Review of Formulas for the Mechanical Efficiency Analysis of Two Degrees-of-Freedom Epicyclic Gear Trains. Journal of Mechanical Design, 125(3), 2003: 602-608. https://doi.org/10.1115/1.1587157
[6] A. Kahraman, H. Ligata, K. Kienzle, D. M. Zini, A Kinematics and Power Flow Analysis Methodology for Automatic Transmission Planetary Gear Trains. Journal of Mechanical Design, 126 (6), 2004: 1071-1081.
https://doi.org/10.1115/1.1814388
[7] J. D. de Gevigney, F. Ville, C. Changenet, P. Velex, Tooth friction losses in internal gears: Analytical formulation and applications to planetary gears. Journal of Engineering Tribology, 227 (5), 2013: 476-485.
https://doi.org/10.1177/1350650112470059
[8] A. H. Juber, E. L. Esmail, M. H. Mosa, Power Flow and Efficiency Analysis of a Ravigneaux Hybrid Transmission. IOP Conference Series: Materials Science and Engineering, 870, 2020:012160. https://iopscience.iop.org/article/10.1088/1757-899X/870/1/012160
[9] H. Chen, X. Chen, Geometrical model for structure and kinematics of planetary gear trains. The 14th IFToMM World Congress, Taipei, Taiwan, 2015: 253-258.
[10] P. A. Simionescu, A Unified Approach to the Assembly Condition of Epicyclic Gears. Journal of Mechanical Design, 120 (3), 1998: 448-452. https://doi.org/10.1115/1.2829172
[11] S. Y. T. Lang, Graph-theoretic modelling of epicyclic gear systems. Mechanism and Machine Theory, 40 (5), 2005: 511-529. https://doi.org/10.1016/j.mechmachtheory.2004.12.001
[12] I. Talpasanu, P. A. Simionescu, Kinematic Analysis of Epicyclic Bevel Gear Trains with Matroid Method. Journal of Mechanical Design, 134 (11), 2012: 114501. https://doi.org/10.1115/1.4007144
[13] S. Muždeka, Strukturna analiza složenih planetarnih prenosnika snage. Vojno tehnički glasnik, 53 (2), 2005: 178-195. http://scindeks.ceon.rs/Article.aspx?artid=0042-84500502178M
[14] M. Novaković, B. Stojanović, M. Milisavljević, S. Miladinović: The kinematic analysis of Ravigneaux planetary gear set. Technical Diagnostic, 15 (1), 2016: 7-12.
[15] A. Kahraman, H. Ligata, K. Kienzle, D. M. Zini, A Kinematics and Power Flow Analysis Methodology for Automatic Transmission Planetary Gear Trains. Journal of Mechanical Design, 126 (6), 2004: 1071-1081.
https://doi.org/10.1115/1.1814388
[16] Z. Levai, Structure and Analysis of Planetary Gear Trains. Journal of Mechanisms, 3 (3), 1968: 131-148. https://doi.org/10.1016/0022-2569(68)90352- 2
[17] Z. Levai, Varieties of the planetary gear train types, 1969.
[18] H. I. Hsieh, L. W. Tsai, Kinematic Analysis of Epicyclic Type Transmission Mechanisms Using the Concept of Fundamental Geared Entities. Journal of Mechanical Design, 118 (2), 1996:294-299. https://doi.org/10.1115/1.2826883
[19] D. Antonescu, M. Strambeanu, P. Antonescu, Structural synthesis of the planetary mechanisms used on the automatic transmissions. Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series, 4, 2016.
[20] I. Talpasanu, T. C. Yih, P. A. Simionescu, Application of Matroid Method in Kinematic Analysis of Parallel Axes Epicyclic Gear Trains. Journal of Mechanical Design, 128 (6), 2006:1307-1314. https://doi.org/10.1115/1.2337310
[21] A. A. Fogarasy, M. R. Smith, A new simplified approach to the kinematic analysis and design of epicyclic gearboxes. Journal of Mechanical Engineering Science, 209 (1) 1995: 49-53. https://doi.org/10.1243/PIME_PROC_1995_209_121_02
[22] E. L. Esmail, T. N. Ali, A. H. Juber, Kinematic analysis of industrial automatic transmissions with planetary gear trains. International Journal of Mechanical Engineering and Technology, 10 (11) 2018: 2213-2225.
[23] E. L. Esmail, Nomographs and Feasibility Graphs for Enumeration of Ravigneaux-Type Automatic Transmissions. Advances in Mechanical Engineering, 5, 2015. http://dx.doi.org/10.1155/2013/120324
[24] E. L. Esmail, Nomographs for synthesis of epicyclic-type automatic transmissions. Meccanica, 48, 2013: 2037-2049. https://link.springer.com/article/10.1007/s11012-013-9721-z
[25] T. T. Ho, S. J. Hwang: Configuration Synthesis of Novel Hybrid Transmission Systems Using a Combination of a Ravigneaux Gear Train and a Simple Planetary Gear Train. Energies, 13 (9), 2020: 2333.
https://doi.org/10.3390/en13092333
[26] S. Y. T. Lang, Graph-theoretic modelling of epicyclic gear systems. Mechanism and Machine Theory, 40 (5), 2005: 511-529. https://doi.org/10.1016/j.mechmachtheory.2004.12.001
[27] E. L. Esmail, Kinematic nomographs of epicyclic type transmission mechanisms. Emirates Journal for Engineering Research, 12 (3) 2007:47-55.
[28] E. L. Esmail, Nomographs for enumeration of clutching sequences associated with epicyclic type automatic transmission mechanisms. Emirates Journal for Engineering Research, 14(1) 2009: 29-38.
[29] H. L. Xue, G. Liu, X. H. Yang, A review of graph theory application research in gears. Journal of Mechanical Engineering Science, 230 (10) 2015. https://doi.org/10.1177/0954406215583321
[30]H. Ding, C. Cai, Patent Analysis and Structural Synthesis of Epicyclic Gear Trains Used in Automatic Transmissions. Applied Sciences, 10(1), 2020: 82. https://doi.org/10.3390/app10010082
[31] Z. Liu, Y. Lei, H. Liu, X. Yang, W. Song, A phenomenological model for investigating unequal planet load sharing in epicyclic gearboxes. Mechanical Systems and Signal Processing, 135, 2020: 106414.
https://doi.org/10.1016/j.ymssp.2019.106414
[32] C. G. Cooley, R. G. Parker, A Review of Planetary and Epicyclic Gear Dynamics and Vibrations Research. Applied Mechanics Reviews, 66 (4), 2014: 040804. https://doi.org/10.1115/1.4027812
[33] Y. Liu, D. Zhen, H. Zhang, H. Zhang, Z. Shi, F. Gu, Vibration Response of the Planetary Gears with a Float Sun Gear and Influences of the Dynamic Parameters. Hindawi Shock and Vibration, 2020 (1), 2020:8886066.
https://doi.org/10.1155/2020/8886066
[34] J. Zhang, H. Guo, Numerical and experimental investigation on nonlinear dynamic characteristics of planetary gear train. Journal of Theoretical and Applied Mechanics, 58 (4), 2020: 1009-1022. https://doi.org/10.15632/jtam-pl/125572
[35] J. Zhang, H. Guo, H. Yu, T. Zhang: Numerical investigation to vibro-acoustic responses of HEV transmission with compound planetary gear train. AIP Conference Proceedings, 2239(1) 2020: 1-16. https://doi.org/10.1063/5.0007937
[36] F. Pfeiffer, Dynamics of a Ravigneaux Gear. Journal of Vibration and Control, 14 (1-2) 2008:181-196. https://doi.org/10.1177/1077546307079397
[37] W. M. Hwang, Y. L. Huang: Connecting clutch elements to planetary gear trains for automotive automatic transmissions via coded sketches. Mechanism and Machine Theory, 46(1) 2011: 44-52.
https://doi.org/10.1016/j.mechmachtheory.2010.08.013
[38] G. Kouroussis, P. Dehombreux, O. Verlinden: Vehicle and powertrain dynamics analysis with an automatic gearbox. Mechanism and Machine Theory, 83 2015: 109-124. https://doi.org/10.1016/j.mechmachtheory.2014.09.009
[39] A. Kapelevich, High Gear Ratio Epicyclic Drives Analysis, Gear tehnology 2014: 62-67.
[40] E. Moulick, K. Wani, K. Kapoor, A. Rawat: Design, Analysis, Simulation and Development of a Ravigneaux Gear-Train, SAE Technical Paper 2019: 1-8. https://doi.org/10.4271/2019-26-0250
[41] E. L. Esmail, F. K. A. Muslim, A. K. Jaber: Reduced Length Eight_Velocity Automatic Transmissions. Journal of University of Babylon for Pure and Applied Sciences, 24 (3) 2016: 748- 763.
[42] X. Song: Design and analysis of automatic transmission for Ravigneaux transmission with four speed. Journal of Physics: Conference Series, 1676 (1), 2020: 012184. https://iopscience.iop.org/article/10.1088/1742-6596/1676/1/012184
[43]Y. F. Chen, I. M. Chen, J. Chang, T. Liu: Design and Analysis of a New Torque Vectoring System with a Ravigneaux Gearset for Vehicle Applications. Energies, 10 (12), 2017: 2157. https://doi.org/10.3390/en10122157
[44] R. Mathis, Y. Remond: Kinematic and dynamic simulation of epicyclic gear trains, Mechanism and Machine Theory, 44 (2), 2009: 412-424. https://doi.org/10.1016/j.mechmachtheory.2008.03.004
[45] S. Miladinović, S. Veličković, B. Stojanović, S. Milojević, Optimization of Ravigneaux planetary gear set. IETI Transactions on Engineering Research and Practice, 2 (2), 2018:34-41. https://doi:10.6723/terp.201812_2(2).0005
[46] S. Miladinović, S. Veličković, K. Karthik, D. Loknath, B. N. Rao, Optimal Safe Factor for Surface Durability of First Central and Satellite Gear Pair in Ravigneaux Planetary Gear Set. Test Engineering & Management, 83, 2020:16504-16510.
[47] A. Grkić, Č. Duboka, M. Krsmanović, Modeliranje procesa promena stepena prenosa u planetarnim menjačkim prenosnicima motornih vozila. Vojnotehnički glasnik, LIX (2), 2011: 41-59.
[48] G. Achtenova, Ideas for testing of planetary gear sets of automotive transmissions. Journal of Middle European Construction and Design of Cars, 15 (1), 2017: 15-21. http://archive.sciendo.com/MECDC/mecdc.2017.15.issue-1/mecdc-2017-0004/mecdc-2017-0004.pdf
[49] J. Sedlak, B. Kudlacova, O. Zemcik, A. Jaros, M. Slany: Production of Planetary Mechanism Model Prototype using Additive Method of Rapid Prototyping. Manufacturing Technology, 17 (3), 2017: 374-381.
https://doi.org/10.21062/ujep/x.2017/a/1213-2489/MT/17/3/374
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
M. Stanojević, R. Tomović, L. Ivanović, B. Stojanović, Critical Analysis of Design of Ravigneaux Planetary Gear Trains. Applied Engineering Letters, 7(1), 2022: 32-44. https://doi.org/10.18485/aeletters.2022.7.1.5
More Citation Formats
Stanojević, M., Tomović, R., Ivanović, L., & Stojanović, B. (2022). Critical Analysis of Design of Ravigneaux Planetary Gear Trains. Applied Engineering Letters, 7(1), 32-44. https://doi.org/10.18485/aeletters.2022.7.1.5
Stanojević, Milan, et al. “Critical Analysis of Design of Ravigneaux Planetary Gear Trains.” Applied Engineering Letters, vol. 7, no. 1, 2022, pp. 32-44, https://doi.org/10.18485/aeletters.2022.7.1.5,
Stanojević, Milan, Radoslav Tomović, Lozica Ivanović, and Blaža Stojanović. 2022. “Critical Analysis of Design of Ravigneaux Planetary Gear Trains.” Applied Engineering Letters 7 (1): 32-44. https://doi.org/10.18485/aeletters.2022.7.1.5.
Stanojević, M., Tomović, R., Ivanović, L. and Stojanović, B. (2022). Critical Analysis of Design of Ravigneaux Planetary Gear Trains. Applied Engineering Letters, 7(1), pp.32-44.
doi: 10.18485/aeletters.2022.7.1.5.
SCImago Journal Rank
2024: SJR=0.300
CWTS Journal Indicators
2024: SNIP=0.77
CRITICAL ANALYSIS OF DESIGN OF RAVIGNEAUX PLANETARY GEAR TRAINS
Authors:
Milan Stanojević1
, Radoslav Tomović2, Lozica Ivanović1, Blaža Stojanović1
1University of Kragujevac, Faculty of Engineering, Kragujevac, Serbia
2University of Montenegro, Faculty of Mechanical Engineering, Podgorica, Montenegro
Received: 28.12.2021.
Accepted: 08.02.2022.
Available: 31.03.2022.
Abstract:
Planetary gear trains have been applied for a long time in the automotive industry as an irreplaceable part of automatic gearboxes. This paper presents, based on existing research, the kinematic analysis and evaluation of Ravigneaux gear trains, effects of power flow analysis and power loss, evaluation of utility effects of energy utilization through analysis of efficiency. It also illustrates research topics that analyse technical challenges of understanding and predicting dynamics and vibrations of planetary gear trains in the process of design of their configuration, optimization of given gear trains in reference to set criteria and affirmation of validity of their constructions by prototyping and prototype testing on the test stand.
Keywords:
Planetary gear train, kinematic analysis, efficiency, Ravigneaux gearset, automatic gearbox
References:
[1] US patent 2749775A, Howard Simpson, Planetary transmission for self-propelled vehicle, published 1956-06-12, No.1956-06-12.
[2] J. M. del Castillo, Symbolic computation of planetary gear train efficiency, European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000, Barselona, 2000.
[3] G. del Pio, E. Pennestrì, P. P. Valentini, Kinematic and power-flow analysis of bevel gears planetary gear trains with gyroscopic complexity. Mechanism and Machine Theory, 70, 2013: 523-537. http://dx.doi.org/10.1016/j.mechmachtheory.2013.08.016
[4] H. A. Hussen, E. L. Esmail, R. A. Hussen, Power Flow Simulation for Two-Degree-of-Freedom Planetary Gear Transmissions with Experimental Validation. Modelling and Simulation in Engineering, 2020 (6), 2020:8837605. https://doi.org/10.1155/2020/8837605
[5] E. Pennestrı, P. P. Valentini, A Review of Formulas for the Mechanical Efficiency Analysis of Two Degrees-of-Freedom Epicyclic Gear Trains. Journal of Mechanical Design, 125(3), 2003: 602-608. https://doi.org/10.1115/1.1587157
[6] A. Kahraman, H. Ligata, K. Kienzle, D. M. Zini, A Kinematics and Power Flow Analysis Methodology for Automatic Transmission Planetary Gear Trains. Journal of Mechanical Design, 126 (6), 2004: 1071-1081. https://doi.org/10.1115/1.1814388
[7] J. D. de Gevigney, F. Ville, C. Changenet, P. Velex, Tooth friction losses in internal gears: Analytical formulation and applications to planetary gears. Journal of Engineering Tribology, 227 (5), 2013: 476-485. https://doi.org/10.1177/1350650112470059
[8] A. H. Juber, E. L. Esmail, M. H. Mosa, Power Flow and Efficiency Analysis of a Ravigneaux Hybrid Transmission. IOP Conference Series: Materials Science and Engineering, 870, 2020:012160. https://iopscience.iop.org/article/10.1088/1757-899X/870/1/012160
[9] H. Chen, X. Chen, Geometrical model for structure and kinematics of planetary gear trains. The 14th IFToMM World Congress, Taipei, Taiwan, 2015: 253-258.
[10] P. A. Simionescu, A Unified Approach to the Assembly Condition of Epicyclic Gears. Journal of Mechanical Design, 120 (3), 1998: 448-452. https://doi.org/10.1115/1.2829172
[11] S. Y. T. Lang, Graph-theoretic modelling of epicyclic gear systems. Mechanism and Machine Theory, 40 (5), 2005: 511-529. https://doi.org/10.1016/j.mechmachtheory.2004.12.001
[12] I. Talpasanu, P. A. Simionescu, Kinematic Analysis of Epicyclic Bevel Gear Trains with Matroid Method. Journal of Mechanical Design, 134 (11), 2012: 114501. https://doi.org/10.1115/1.4007144
[13] S. Muždeka, Strukturna analiza složenih planetarnih prenosnika snage. Vojno tehnički glasnik, 53 (2), 2005: 178-195. http://scindeks.ceon.rs/Article.aspx?artid=0042-84500502178M
[14] M. Novaković, B. Stojanović, M. Milisavljević, S. Miladinović: The kinematic analysis of Ravigneaux planetary gear set. Technical Diagnostic, 15 (1), 2016: 7-12.
[15] A. Kahraman, H. Ligata, K. Kienzle, D. M. Zini, A Kinematics and Power Flow Analysis Methodology for Automatic Transmission Planetary Gear Trains. Journal of Mechanical Design, 126 (6), 2004: 1071-1081. https://doi.org/10.1115/1.1814388
[16] Z. Levai, Structure and Analysis of Planetary Gear Trains. Journal of Mechanisms, 3 (3), 1968: 131-148. https://doi.org/10.1016/0022-2569(68)90352- 2
[17] Z. Levai, Varieties of the planetary gear train types, 1969.
[18] H. I. Hsieh, L. W. Tsai, Kinematic Analysis of Epicyclic Type Transmission Mechanisms Using the Concept of Fundamental Geared Entities. Journal of Mechanical Design, 118 (2), 1996:294-299. https://doi.org/10.1115/1.2826883
[19] D. Antonescu, M. Strambeanu, P. Antonescu, Structural synthesis of the planetary mechanisms used on the automatic transmissions. Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series, 4, 2016.
[20] I. Talpasanu, T. C. Yih, P. A. Simionescu, Application of Matroid Method in Kinematic Analysis of Parallel Axes Epicyclic Gear Trains. Journal of Mechanical Design, 128 (6), 2006:1307-1314. https://doi.org/10.1115/1.2337310
[21] A. A. Fogarasy, M. R. Smith, A new simplified approach to the kinematic analysis and design of epicyclic gearboxes. Journal of Mechanical Engineering Science, 209 (1) 1995: 49-53. https://doi.org/10.1243/PIME_PROC_1995_209_121_02
[22] E. L. Esmail, T. N. Ali, A. H. Juber, Kinematic analysis of industrial automatic transmissions with planetary gear trains. International Journal of Mechanical Engineering and Technology, 10 (11) 2018: 2213-2225.
[23] E. L. Esmail, Nomographs and Feasibility Graphs for Enumeration of Ravigneaux-Type Automatic Transmissions. Advances in Mechanical Engineering, 5, 2015. http://dx.doi.org/10.1155/2013/120324
[24] E. L. Esmail, Nomographs for synthesis of epicyclic-type automatic transmissions. Meccanica, 48, 2013: 2037-2049. https://link.springer.com/article/10.1007/s11012-013-9721-z
[25] T. T. Ho, S. J. Hwang: Configuration Synthesis of Novel Hybrid Transmission Systems Using a Combination of a Ravigneaux Gear Train and a Simple Planetary Gear Train. Energies, 13 (9), 2020: 2333. https://doi.org/10.3390/en13092333
[26] S. Y. T. Lang, Graph-theoretic modelling of epicyclic gear systems. Mechanism and Machine Theory, 40 (5), 2005: 511-529. https://doi.org/10.1016/j.mechmachtheory.2004.12.001
[27] E. L. Esmail, Kinematic nomographs of epicyclic type transmission mechanisms. Emirates Journal for Engineering Research, 12 (3) 2007:47-55.
[28] E. L. Esmail, Nomographs for enumeration of clutching sequences associated with epicyclic type automatic transmission mechanisms. Emirates Journal for Engineering Research, 14(1) 2009: 29-38.
[29] H. L. Xue, G. Liu, X. H. Yang, A review of graph theory application research in gears. Journal of Mechanical Engineering Science, 230 (10) 2015. https://doi.org/10.1177/0954406215583321
[30]H. Ding, C. Cai, Patent Analysis and Structural Synthesis of Epicyclic Gear Trains Used in Automatic Transmissions. Applied Sciences, 10(1), 2020: 82. https://doi.org/10.3390/app10010082
[31] Z. Liu, Y. Lei, H. Liu, X. Yang, W. Song, A phenomenological model for investigating unequal planet load sharing in epicyclic gearboxes. Mechanical Systems and Signal Processing, 135, 2020: 106414. https://doi.org/10.1016/j.ymssp.2019.106414
[32] C. G. Cooley, R. G. Parker, A Review of Planetary and Epicyclic Gear Dynamics and Vibrations Research. Applied Mechanics Reviews, 66 (4), 2014: 040804. https://doi.org/10.1115/1.4027812
[33] Y. Liu, D. Zhen, H. Zhang, H. Zhang, Z. Shi, F. Gu, Vibration Response of the Planetary Gears with a Float Sun Gear and Influences of the Dynamic Parameters. Hindawi Shock and Vibration, 2020 (1), 2020:8886066. https://doi.org/10.1155/2020/8886066
[34] J. Zhang, H. Guo, Numerical and experimental investigation on nonlinear dynamic characteristics of planetary gear train. Journal of Theoretical and Applied Mechanics, 58 (4), 2020: 1009-1022. https://doi.org/10.15632/jtam-pl/125572
[35] J. Zhang, H. Guo, H. Yu, T. Zhang: Numerical investigation to vibro-acoustic responses of HEV transmission with compound planetary gear train. AIP Conference Proceedings, 2239(1) 2020: 1-16. https://doi.org/10.1063/5.0007937
[36] F. Pfeiffer, Dynamics of a Ravigneaux Gear. Journal of Vibration and Control, 14 (1-2) 2008:181-196. https://doi.org/10.1177/1077546307079397
[37] W. M. Hwang, Y. L. Huang: Connecting clutch elements to planetary gear trains for automotive automatic transmissions via coded sketches. Mechanism and Machine Theory, 46(1) 2011: 44-52. https://doi.org/10.1016/j.mechmachtheory.2010.08.013
[38] G. Kouroussis, P. Dehombreux, O. Verlinden: Vehicle and powertrain dynamics analysis with an automatic gearbox. Mechanism and Machine Theory, 83 2015: 109-124. https://doi.org/10.1016/j.mechmachtheory.2014.09.009
[39] A. Kapelevich, High Gear Ratio Epicyclic Drives Analysis, Gear tehnology 2014: 62-67.
[40] E. Moulick, K. Wani, K. Kapoor, A. Rawat: Design, Analysis, Simulation and Development of a Ravigneaux Gear-Train, SAE Technical Paper 2019: 1-8. https://doi.org/10.4271/2019-26-0250
[41] E. L. Esmail, F. K. A. Muslim, A. K. Jaber: Reduced Length Eight_Velocity Automatic Transmissions. Journal of University of Babylon for Pure and Applied Sciences, 24 (3) 2016: 748- 763.
[42] X. Song: Design and analysis of automatic transmission for Ravigneaux transmission with four speed. Journal of Physics: Conference Series, 1676 (1), 2020: 012184. https://iopscience.iop.org/article/10.1088/1742-6596/1676/1/012184
[43]Y. F. Chen, I. M. Chen, J. Chang, T. Liu: Design and Analysis of a New Torque Vectoring System with a Ravigneaux Gearset for Vehicle Applications. Energies, 10 (12), 2017: 2157. https://doi.org/10.3390/en10122157
[44] R. Mathis, Y. Remond: Kinematic and dynamic simulation of epicyclic gear trains, Mechanism and Machine Theory, 44 (2), 2009: 412-424. https://doi.org/10.1016/j.mechmachtheory.2008.03.004
[45] S. Miladinović, S. Veličković, B. Stojanović, S. Milojević, Optimization of Ravigneaux planetary gear set. IETI Transactions on Engineering Research and Practice, 2 (2), 2018:34-41. https://doi:10.6723/terp.201812_2(2).0005
[46] S. Miladinović, S. Veličković, K. Karthik, D. Loknath, B. N. Rao, Optimal Safe Factor for Surface Durability of First Central and Satellite Gear Pair in Ravigneaux Planetary Gear Set, Test Engineering & Management, 83, 2020:16504-16510.
[47] A. Grkić, Č. Duboka, M. Krsmanović, Modeliranje procesa promena stepena prenosa u planetarnim menjačkim prenosnicima motornih vozila. Vojnotehnički glasnik, LIX (2), 2011: 41-59.
[48] G. Achtenova, Ideas for testing of planetary gear sets of automotive transmissions. Journal of Middle European Construction and Design of Cars, 15 (1), 2017: 15-21. http://archive.sciendo.com/MECDC/mecdc.2017.15.issue-1/mecdc-2017-0004/mecdc-2017-0004.pdf
[49] J. Sedlak, B. Kudlacova, O. Zemcik, A. Jaros, M. Slany: Production of Planetary Mechanism Model Prototype using Additive Method of Rapid Prototyping. Manufacturing Technology, 17 (3), 2017: 374-381. https://doi.org/10.21062/ujep/x.2017/a/1213-2489/MT/17/3/374
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)