Journal Menu
Archive
Last Edition

DETERMINATION OF OPTIMAL MODES FOR THE PRODUCTION OF MICRO RANGE METAL POWDERS

Authors:

M.A. Kuznetsov1, D.P. Il’yashchenko1,2

, E.V. Lavrova3, S.A. Solodsky1

О.А. Podgornyh1,

E.V. Verkhoturova4

1National Research Tomsk Polytechnic University, Tomsk, Russian Federation
2Institute of strength physics and materials science SB RAS, Tomsk, Russian Federation
3State Higher Educational Institution “Priazovskiy State Technical University”, Mariupol, Ukraine
4 Irkutsk National Research Technical University, Irkutsk, Russian Federation

Received: 12.01.2022.
Accepted: 25.02.2022.
Available: 31.03.2022.

Abstract:

This paper presents the results of working out the modes of obtaining micro range powders according to the developed method. It is based on the navigation on the material of the vortex plasma flows of heterogeneous plasma and synchronized high-frequency impact on the electrode. The formation of powders is derived from individual particles heated and accelerated using a high-temperature gas jet – plasma. It is obtained in a special original plasma generator by blowing the plasma-forming inert gas into an electric arc resulting between two electrodes. The possibility of obtaining powders of various sizes and chemical composition by this method on the developed technology has been established. The design of the executive equipment that implements the studied generation process of the micro-size range is best suited for steel wires. Experimental studies made it possible to determine the optimal modes for wires of various chemical composition (steel wire, with a diameter of 1.2 mm, OK Autrod 347Si with a diameter of 0.8 mm). Range of parameters and modes of actuating equipment: current of 70-80A; Plasma-forming gas pressure 0.7- 0.8 atm., Wire feed rate 20-40 mm/s, the frequency of ultrasonic oscillations of 50 MHz and 100 MHz. In these conditions, powders are obtained with a dimension of 50-100 μm.

Keywords:

Metal powders, Optimal modes, Plasma torch nozzle, Wire, Chemical composition

References:

[1] V. Ivanov, E. Lavrova, F. Morgay, O. Semkiv, Investigation of the heat-affected zone properties during cladding of power equipment with austenitic materials using control mechanical impacts on the strip electrode. Materials Science Forum, 1038 MSF, 2021: 100-107. 
https://doi.org/10.4028/www.scientific.net/MSF.1038.100
[2] V. Ivanov, E. Lavrova, V. Kibish, I. Mamontov, Research of the microstructure of the deposited layer during electric arc surfacing with control impacts. Materials Science Forum, 1038, 2021:85-92.
https://doi.org/10.4028/www.scientific.net/MSF.1038.85
[3] V.P. Ivanov, E.V. Lavrova, D.P. Il’Yaschenko, E.V. Verkhoturova, Modelling of fusion zone formation in shielded metal arc welding. Structural Integrity and Life, 20 (3), 2020: 281-284.
http://divk.inovacionicentar.rs/ivk/ivk20/281-IVK3-2020-VPI-EVL-DPI-EVV.pdf
[4] L.P. Raut, R.V. Taiwade, Wire Arc Additive Manufacturing: A Comprehensive Review and Research Directions. J. of Mater. Eng. and Perform, 30, 2021: 4768-4791. https://doi.org/10.1007/s11665-021-05871-5
[5] W.S.W. Harun, M.S.I.N. Kamariah, N. Muhamad, S.A.C. Ghani, F. Ahmad, Z. Mohamed, A review of powder additive manufacturing processes for metallic biomaterials. Powder Technology, 327, 2018: 128-151.
https://doi.org/10.1016/j.powtec.2017.12.058
[6] B.E. Paton, A.Ya. Ishchenko, A.I. Ustinov, Application of nanotechnology of permanent joining of advanced light-weight metallic materials for aerospace engineering. The Paton Welding Journal, 12, 2008: 2-8.
[7] K. Pal, M.M. Mohan, S. Thomas, Dynamic application of novel electro-optic switchable device modulation by graphene oxide dispersed liquid crystal cell assembling CdS nanowires. Organic Electronics: physics, materials, applications, 39, 2016: 25-37. https://doi.org/10.1016/j.orgel.2016.09.019
[8] D.P. Il’yaschenko, D.A. Chinakhov, S.V. Makarov, V.I. Danilov, A.A. Galinsky, E.V. Verkhoturova, Effect of ultra-disperse powder in electrode coating on properties of welds in MMA welding. Engineering Solid Mechanics, 8 (1), 2020: 41-48. https://doi.org/10.5267/j.esm.2019.8.006
[9] Yu.V. Baldokhin, I.P. Suzdalev, V.E. Prusakov, D.A. Burnazyan, V.P. Korneev, L.V. Kovalenko, G.E. Folmanis, A study of nanostructures formed in the hydrogen reduction of Fe(OH)3. Russian Journal of Physical Chemistry, B, 6 (1), 2012: 81-88. https://doi.org/10.1134/S1990793112010034
[10] I. Zhukov, S. Vorozhtsov, V. Promakhov, I. Bondarchuk, A. Zhukov, A. Vorozhtsov, Plasmachemical method for producing metal oxide powders and their application. Journal of Physics: Conference Series, 652, 2015: 012027. https://doi.org/10.1088/1742-6596/652/1/012027
[11] M.A. Smirnov, M.A. Kaplan, M.A. Sevostyanov, Receiving finely divided metal powder by inert gas atomization. IOP Conference SeriesMaterials Science and Engineering, 347, 2018:012033. https://doi.org/10.1088/1757-899X/347/1/012033
[12] W. Dong , Y. Meng, F.M. Xu, Y. Han, Y.Y. Wang, X.M. Wang , Y. Zhao, Preparation of Sn-Pb Spherical Fine Metal Powders by Centrifugal Atomization Based on Mono-Sized Droplets. Powder metallurgy and metal ceramics, 56 (5-6), 2020: 239-248. https://doi.org/10.1007/s11106-020-00156-3
[13] S. Wallner, Powder Production Technologies. Berg Huettenmaenn Monatsh, 164 (3), 2019:108-111.
https://doi.org/10.1007/s00501-019-0832-2
[14] K. Kassym, A. Perveen, Atomization processes of metal powders for 3D printing. Materials Today: Proceedings, 2020: 1-7. https://doi.org/10.1016/j.matpr.2020.02.364
[15] S.H. Saheb, V.K. Durgam, A.A. Chandrashekhar, Review on Metal Powder sin Additive Manufacturing. Third international conference on inventive material science applications (ICIMA 2020), 2281 (1), 2020: 020018.
https://doi.org/10.1063/5.0026203
[16] N.G. Razumov, Q.-S. Wang, A.A. Popovich, A.I. Shamshurin, Fabrication of spherical highnitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization. AIP Conference Proceedings 1946, 2018: 020001. https://doi.org/10.1063/1.5030305
[17] N.G. Razumov, A.A. Popovich, Q.-S. Wang, Thermal Plasma Spheroidization of HighNitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying. Metals and Materials International, 24 (2), 2018: 363-370.
https://doi.org/10.1007/s12540-018-0040-8
[18] S. Yang, J.-N. Gwak, T.-S. Lim, Y.J. Kim, J.-Y. Yun, Preparation of Spherical Titanium Powders from Polygonal Titanium Hydride Powders by Radio Frequency Plasma Treatment. Materials Transactions, 54 (12), 2013: 2313-2316.
https://doi.org/10.2320/matertrans.M2013329
[19] R. Vert, R. Pontone, R. Dolbec, L. Dionne, M.I. Boulos, Induction Plasma Technology Applied to Powder Manufacturing: Example of Titanium-Based Materials. Key Engineering Materials, 704, 2016: 282-286.
https://doi.org/10.4028/www.scientific.net/KEM.704.282
[20] K.B. Povarova, O.A. Skachkov, A.A. Drozdov, S.V. Pozharov, T.A. Berezina, Powder alloys FeCr-Al and NiAl. I. Production of powders. Procurement production in mechanical engineering, 15 (8), 2017: 370-377.
[21] N.E. Ozerskoy, A.A. Popovich, B.S. Ermakov, Obtaining spherical powders of VT6 alloy for application in the technology of selective laser melting. Scientific and technical statements of St. Petersburg Polytechnic University. Natural and engineering sciences, 25 (4), 2019: 107-115.
[22] V.O. Panova, Yu.F. Ternovoy, Obtaining powders with a particle shape close to spherical by spraying melts with water. Bulletin of KhNADU, 88 (1), 2020: 80-85.
[23] A. Samokhin, N. Alekseev, A. Astashov, A. Dorofeev, A. Fadeev, M. Sinayskiy, Y. Kalashnikov, Preparation of w-c-co composite micropowder with spherical shaped particles using plasma technologies. Materials, 14 (15), 2021: 4258. https://doi.org/10.3390/ma14154258
[24] U.V. Grigoriev, N.G. Razumov, U.U. Popovich, U.V. Samokhin, Plasma spheroidization of NbSi-based powder alloys obtained by mechanical alloying. St. Petersburg polytechnic university journal of engineering sciences and technology, 23 (1), 2017: 247-255.
[25] A.V. Samokhin, S.N. Polyakov, A.G. Astashov, N.V. Alexeev, Y.V. Tsvetkov, Simulation of the process of nanopowder synthesis in a jet-type plasma reactor. II. Nanoparticles formation. Physics and Chemistry of Materials Treatment, 3, 2014: 12-17.
[26] Yu.V. Tsvetkov, A.V. Samokhin, A.A. Fadeev, N.V. Alekseev, V.I. Kotlyarov, Spheroidization of metal powders in the thermal plasma of an electric arc discharge. Technology of light alloys, 2, 2016: 19-24.
[27] A.A. Popovich, N.G. Razumov, A.V. Grigoriev, A.V. Samokhin, V.Sh. Sufiiarov, I.S. Goncharov, A.A. Fadeev, M.A. Sinaiskii, Fabrication of the Nb–16Si alloy powder for additive technologies by mechanical alloying and spheroidization in electric-arc discharge thermal plasma. Russian Journal of Non-Ferrous Metals, 59 (6), 2018:671-676.
[28] L. Ji, C. Wang, W. Wu, C. Tan, G. Wang, X.-M. Duan, Spheroidization by Plasma Processing and Characterization of Stainless Steel Powder for 3D Printing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 48 (10), 2017: 4831-4841. https://doi.org/10.1007/s11661-017-4240-5
[29] V.I. Kotlyarov, V.T. Beshkarev, V.E. Kartsev, V.V. Ivanov, A.A. Gasanov, E.A. Yuzhakova, A.V. Samokhin, A.A. Fadeev, N.V. Alekseev, M.A. Sinayskiy, E.V. Tretyakov, Production of spherical powders on the basis of group IV metals for additive manufacturing. Inorganic Materials: Applied Research, 8 (3), 2017: 452-458. https://doi.org/10.1134/S2075113317030157
[30] Z. Yan, M. Xiao, X. Mao, K. Khanlari, Q. Shi, X. Liu, Fabrication of spherical WC-Co powders by radio frequency inductively coupled plasma and a consequent heat treatment. Powder Technology, 385, 2021: 160-169. https://doi.org/10.1016/j.powtec.2021.02.075
[31] M.A. Kuznetsov, D.P. Iljyashchenko, A.V. Kryukov, S.A. Solodsky, E.V. Lavrova, E.V. Verkhoturova, Development of Executive Equipment Design for Implementing the Process of Generating of Drops of Micro- and Nanoscale Range. Devices and Methods of Measurements, 12 (1), 2021: 38-45. https://doi.org/10.21122/2220-9506-2021-12-1-38-45
[32] F.A. Khromchenko, Welding manual of an electric welder. 2nd ed., Rev. – Rostov on Don: Phoenix, 2011. p.332
[33] OK AUTROD 347SI. Catalog of welding consumable. https://www.esab.ru/ru/ru/products/filler-metals/mig-mag-wiresgmaw/stainless-steel-wires/ok-autrod347si.cfm. (Accessed 11.01.2022)
[34] M.A. Kuznetsov, S.A. Solodsky, A.V. Kryukov, D.P. Iljyashchenko, E.V. Verkhoturova, Study of the Effect of Shielding Gas on the Plasma Flow of an Electric Arc and on the Droplet of a Molten Metal. Plasma Physics Reports, 47 (1), 2021: 100-104. https://doi.org/10.1134/S1063780X21010098
[35] V.D. Sarychev, S.A. Nevsky, M.A. Kuznetsov, S.A. Solodsky, D.P. Iljyashchenko, E.V. Verkhoturova, Kelvin-Helmholtz instability and magneto-hydrodynamic instability of a cylindrical column, Applied Physics, 3, 2020: 5-10. https://applphys.orion-ir.ru/appl-20/20-3/PF20-3-5.pdf

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 3
September 2025

Loading

Last Edition

Volume 10
Number 3
September 2025

How to Cite

M.A. Kuznetsov, D.P. Il’yashchenko, E.V. Lavrova, S.A. Solodsky, О.А. Podgornyh, E.V. Verkhoturova,  Determination of Optimal Modes for the Production of Micro Range Metal Powders. Applied Engineering Letters, 7(1), 2022: 17-24.
https://doi.org/10.18485/aeletters.2022.7.1.3

More Citation Formats

Kuznetsov, M. A., Il’yashchenko, D. P., Lavrova, E. V., Solodsky, S. A., Podgornyh, О. А., & Verkhoturova, E. V. (2022). Determination of Optimal Modes for the Production of Micro Range Metal Powders. Applied Engineering Letters7(1), 17-24. https://doi.org/10.18485/aeletters.2022.7.1.3

Kuznetsov, M.A., et al. “Determination of Optimal Modes for the Production of Micro Range Metal Powders.” Applied Engineering Letters, vol. 7, no. 1, 2022, pp. 17-24, https://doi.org/10.18485/aeletters.2022.7.1.3.

Kuznetsov, M.A., D.P. Il’yashchenko, E.V. Lavrova, S.A. Solodsky, О.А. Podgornyh, and E.V. Verkhoturova. 2022. “Determination of Optimal Modes for the Production of Micro Range Metal Powders.” Applied Engineering Letters 7 (1): 17-24. https://doi.org/10.18485/aeletters.2022.7.1.3.

Kuznetsov, M.A., Il’yashchenko, D.P., Lavrova, E.V., Solodsky, S.A., Podgornyh, О.А. and Verkhoturova, E.V. (2022). Determination of Optimal Modes for the Production of Micro Range Metal Powders. Applied Engineering Letters, 7(1), pp.17-24. doi: 10.18485/aeletters.2022.7.1.3.

DETERMINATION OF OPTIMAL MODES FOR THE PRODUCTION OF MICRO RANGE METAL POWDERS

Authors:

M.A. Kuznetsov1, D.P. Il’yashchenko1,2

, E.V. Lavrova3, S.A. Solodsky1

О.А. Podgornyh1,

E.V. Verkhoturova4

1National Research Tomsk Polytechnic University, Tomsk, Russian Federation
2Institute of strength physics and materials science SB RAS, Tomsk, Russian Federation
3State Higher Educational Institution “Priazovskiy State Technical University”, Mariupol, Ukraine
4 Irkutsk National Research Technical University, Irkutsk, Russian Federation

Received: 12.01.2022.
Accepted: 25.02.2022.
Available: 31.03.2022.

Abstract:

This paper presents the results of working out the modes of obtaining micro range powders according to the developed method. It is based on the navigation on the material of the vortex plasma flows of heterogeneous plasma and synchronized high-frequency impact on the electrode. The formation of powders is derived from individual particles heated and accelerated using a high-temperature gas jet – plasma. It is obtained in a special original plasma generator by blowing the plasma-forming inert gas into an electric arc resulting between two electrodes. The possibility of obtaining powders of various sizes and chemical composition by this method on the developed technology has been established. The design of the executive equipment that implements the studied generation process of the micro-size range is best suited for steel wires. Experimental studies made it possible to determine the optimal modes for wires of various chemical composition (steel wire, with a diameter of 1.2 mm, OK Autrod 347Si with a diameter of 0.8 mm). Range of parameters and modes of actuating equipment: current of 70-80A; Plasma-forming gas pressure 0.7- 0.8 atm., Wire feed rate 20-40 mm/s, the frequency of ultrasonic oscillations of 50 MHz and 100 MHz. In these conditions, powders are obtained with a dimension of 50-100 μm.

Keywords:

Metal powders, Optimal modes, Plasma torch nozzle, Wire, Chemical composition

References:

[1] V. Ivanov, E. Lavrova, F. Morgay, O. Semkiv, Investigation of the heat-affected zone properties during cladding of power equipment with austenitic materials using control mechanical impacts on the strip electrode. Materials Science Forum, 1038 MSF, 2021: 100-107. https://doi.org/10.4028/www.scientific.net/MSF.1038.100
[2] V. Ivanov, E. Lavrova, V. Kibish, I. Mamontov, Research of the microstructure of the deposited layer during electric arc surfacing with control impacts. Materials Science Forum, 1038, 2021:85-92. https://doi.org/10.4028/www.scientific.net/MSF.1038.85
[3] V.P. Ivanov, E.V. Lavrova, D.P. Il’Yaschenko, E.V. Verkhoturova, Modelling of fusion zone formation in shielded metal arc welding. Structural Integrity and Life, 20 (3), 2020: 281-284. http://divk.inovacionicentar.rs/ivk/ivk20/281-IVK3-2020-VPI-EVL-DPI-EVV.pdf
[4] L.P. Raut, R.V. Taiwade, Wire Arc Additive Manufacturing: A Comprehensive Review and Research Directions. J. of Mater. Eng. and Perform, 30, 2021: 4768-4791. https://doi.org/10.1007/s11665-021-05871-5
[5] W.S.W. Harun, M.S.I.N. Kamariah, N. Muhamad, S.A.C. Ghani, F. Ahmad, Z. Mohamed, A review of powder additive manufacturing processes for metallic biomaterials. Powder Technology, 327, 2018: 128-151. https://doi.org/10.1016/j.powtec.2017.12.058
[6] B.E. Paton, A.Ya. Ishchenko, A.I. Ustinov, Application of nanotechnology of permanent joining of advanced light-weight metallic materials for aerospace engineering. The Paton Welding Journal, 12, 2008: 2-8.
[7] K. Pal, M.M. Mohan, S. Thomas, Dynamic application of novel electro-optic switchable device modulation by graphene oxide dispersed liquid crystal cell assembling CdS nanowires. Organic Electronics: physics, materials, applications, 39, 2016: 25-37. https://doi.org/10.1016/j.orgel.2016.09.019
[8] D.P. Il’yaschenko, D.A. Chinakhov, S.V. Makarov, V.I. Danilov, A.A. Galinsky, E.V. Verkhoturova, Effect of ultra-disperse powder in electrode coating on properties of welds in MMA welding. Engineering Solid Mechanics, 8 (1), 2020: 41-48. https://doi.org/10.5267/j.esm.2019.8.006
[9] Yu.V. Baldokhin, I.P. Suzdalev, V.E. Prusakov, D.A. Burnazyan, V.P. Korneev, L.V. Kovalenko, G.E. Folmanis, A study of nanostructures formed in the hydrogen reduction of Fe(OH)3. Russian Journal of Physical Chemistry, B, 6 (1), 2012: 81-88. https://doi.org/10.1134/S1990793112010034
[10] I. Zhukov, S. Vorozhtsov, V. Promakhov, I. Bondarchuk, A. Zhukov, A. Vorozhtsov, Plasmachemical method for producing metal oxide powders and their application. Journal of Physics: Conference Series, 652, 2015: 012027. https://doi.org/10.1088/1742-6596/652/1/012027
[11] M.A. Smirnov, M.A. Kaplan, M.A. Sevostyanov, Receiving finely divided metal powder by inert gas atomization. IOP Conference SeriesMaterials Science and Engineering, 347, 2018:012033. https://doi.org/10.1088/1757-899X/347/1/012033
[12] W. Dong , Y. Meng, F.M. Xu, Y. Han, Y.Y. Wang, X.M. Wang , Y. Zhao, Preparation of Sn-Pb Spherical Fine Metal Powders by Centrifugal Atomization Based on Mono-Sized Droplets. Powder metallurgy and metal ceramics, 56 (5-6), 2020: 239-248. https://doi.org/10.1007/s11106-020-00156-3
[13] S. Wallner, Powder Production Technologies. Berg Huettenmaenn Monatsh, 164 (3), 2019:108-111. https://doi.org/10.1007/s00501-019-0832-2
[14] K. Kassym, A. Perveen, Atomization processes of metal powders for 3D printing. Materials Today: Proceedings, 2020: 1-7. https://doi.org/10.1016/j.matpr.2020.02.364
[15] S.H. Saheb, V.K. Durgam, A.A. Chandrashekhar, Review on Metal Powder sin Additive Manufacturing. Third international conference on inventive material science applications (ICIMA 2020), 2281 (1), 2020: 020018. https://doi.org/10.1063/5.0026203
[16] N.G. Razumov, Q.-S. Wang, A.A. Popovich, A.I. Shamshurin, Fabrication of spherical highnitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization. AIP Conference Proceedings 1946, 2018: 020001. https://doi.org/10.1063/1.5030305
[17] N.G. Razumov, A.A. Popovich, Q.-S. Wang, Thermal Plasma Spheroidization of HighNitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying. Metals and Materials International, 24 (2), 2018: 363-370. https://doi.org/10.1007/s12540-018-0040-8
[18] S. Yang, J.-N. Gwak, T.-S. Lim, Y.J. Kim, J.-Y. Yun, Preparation of Spherical Titanium Powders from Polygonal Titanium Hydride Powders by Radio Frequency Plasma Treatment. Materials Transactions, 54 (12), 2013: 2313-2316. https://doi.org/10.2320/matertrans.M2013329
[19] R. Vert, R. Pontone, R. Dolbec, L. Dionne, M.I. Boulos, Induction Plasma Technology Applied to Powder Manufacturing: Example of Titanium-Based Materials. Key Engineering Materials, 704, 2016: 282-286. https://doi.org/10.4028/www.scientific.net/KEM.704.282
[20] K.B. Povarova, O.A. Skachkov, A.A. Drozdov, S.V. Pozharov, T.A. Berezina, Powder alloys FeCr-Al and NiAl. I. Production of powders. Procurement production in mechanical engineering, 15 (8), 2017: 370-377.
[21] N.E. Ozerskoy, A.A. Popovich, B.S. Ermakov, Obtaining spherical powders of VT6 alloy for application in the technology of selective laser melting. Scientific and technical statements of St. Petersburg Polytechnic University. Natural and engineering sciences, 25 (4), 2019: 107-115.
[22] V.O. Panova, Yu.F. Ternovoy, Obtaining powders with a particle shape close to spherical by spraying melts with water. Bulletin of KhNADU, 88 (1), 2020: 80-85.
[23] A. Samokhin, N. Alekseev, A. Astashov, A. Dorofeev, A. Fadeev, M. Sinayskiy, Y. Kalashnikov, Preparation of w-c-co composite micropowder with spherical shaped particles using plasma technologies. Materials, 14 (15), 2021: 4258. https://doi.org/10.3390/ma14154258
[24] U.V. Grigoriev, N.G. Razumov, U.U. Popovich, U.V. Samokhin, Plasma spheroidization of NbSi-based powder alloys obtained by mechanical alloying. St. Petersburg polytechnic university journal of engineering sciences and technology, 23 (1), 2017: 247-255.
[25] A.V. Samokhin, S.N. Polyakov, A.G. Astashov, N.V. Alexeev, Y.V. Tsvetkov, Simulation of the process of nanopowder synthesis in a jet-type plasma reactor. II. Nanoparticles formation. Physics and Chemistry of Materials Treatment, 3, 2014: 12-17.
[26] Yu.V. Tsvetkov, A.V. Samokhin, A.A. Fadeev, N.V. Alekseev, V.I. Kotlyarov, Spheroidization of metal powders in the thermal plasma of an electric arc discharge. Technology of light alloys, 2, 2016: 19-24.
[27] A.A. Popovich, N.G. Razumov, A.V. Grigoriev, A.V. Samokhin, V.Sh. Sufiiarov, I.S. Goncharov, A.A. Fadeev, M.A. Sinaiskii, Fabrication of the Nb–16Si alloy powder for additive technologies by mechanical alloying and spheroidization in electric-arc discharge thermal plasma. Russian Journal of Non-Ferrous Metals, 59 (6), 2018:671-676.
[28] L. Ji, C. Wang, W. Wu, C. Tan, G. Wang, X.-M. Duan, Spheroidization by Plasma Processing and Characterization of Stainless Steel Powder for 3D Printing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 48 (10), 2017: 4831-4841. https://doi.org/10.1007/s11661-017-4240-5
[29] V.I. Kotlyarov, V.T. Beshkarev, V.E. Kartsev, V.V. Ivanov, A.A. Gasanov, E.A. Yuzhakova, A.V. Samokhin, A.A. Fadeev, N.V. Alekseev, M.A. Sinayskiy, E.V. Tretyakov, Production of spherical powders on the basis of group IV metals for additive manufacturing. Inorganic Materials: Applied Research, 8 (3), 2017: 452-458. https://doi.org/10.1134/S2075113317030157
[30] Z. Yan, M. Xiao, X. Mao, K. Khanlari, Q. Shi, X. Liu, Fabrication of spherical WC-Co powders by radio frequency inductively coupled plasma and a consequent heat treatment. Powder Technology, 385, 2021: 160-169. https://doi.org/10.1016/j.powtec.2021.02.075
[31] M.A. Kuznetsov, D.P. Iljyashchenko, A.V. Kryukov, S.A. Solodsky, E.V. Lavrova, E.V. Verkhoturova, Development of Executive Equipment Design for Implementing the Process of Generating of Drops of Micro- and Nanoscale Range. Devices and Methods of Measurements, 12 (1), 2021: 38-45. https://doi.org/10.21122/2220-9506-2021-12-1-38-45
[32] F.A. Khromchenko, Welding manual of an electric welder. 2nd ed., Rev. – Rostov on Don: Phoenix, 2011. p.332
[33] OK AUTROD 347SI. Catalog of welding consumable. https://www.esab.ru/ru/ru/products/filler-metals/mig-mag-wiresgmaw/stainless-steel-wires/ok-autrod347si.cfm. (Accessed 11.01.2022)
[34] M.A. Kuznetsov, S.A. Solodsky, A.V. Kryukov, D.P. Iljyashchenko, E.V. Verkhoturova, Study of the Effect of Shielding Gas on the Plasma Flow of an Electric Arc and on the Droplet of a Molten Metal. Plasma Physics Reports, 47 (1), 2021: 100-104. https://doi.org/10.1134/S1063780X21010098
[35] V.D. Sarychev, S.A. Nevsky, M.A. Kuznetsov, S.A. Solodsky, D.P. Iljyashchenko, E.V. Verkhoturova, Kelvin-Helmholtz instability and magneto-hydrodynamic instability of a cylindrical column, Applied Physics, 3, 2020: 5-10. https://applphys.orion-ir.ru/appl-20/20-3/PF20-3-5.pdf

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 10
Number 3
September 2025

Loading

Last Edition

Volume 10
Number 3
September 2025