ISSN 2466-4677; e-ISSN 2466-4847
SCImago Journal Rank
2024: SJR=0.300
CWTS Journal Indicators
2024: SNIP=0.77
ENGINEERING THE MICROSTRUCTURE AND OPTICAL FEATURES OF SiC- MWCNTS NANOPARTICLES DOPED PVA-PAA FOR PROMISING INDUSTRIAL APPLICATIONS
Authors:
, Ahmed Hashim1
,
Mohammed H. Abbas1
1Department of Physics, University of Babylon, College of Education for Pure Sciences, Babylon, Iraq
2Department of Physics, College of Basic Education, University of Babylon, Iraq
3Building and Construction Technologies Engineering Department, College of Engineering and Engineering
Technologies, Al-Mustaqbal University, 51001, Babylon, Iraq
Received: 21 August 2025
Revised: 18 October 2025
Accepted: 26 November 2025
Published: 15 December 2025
Abstract:
The development of new materials with improved features requires the use of nanocomposite materials and polymer blends. Their special combination provides enhanced performance in a range of environmental, biomedical, and industrial applications. Using the traditional casting procedure, the polyvinyl alcohol (PVA) / poly acrylic acid (PAA) polymer blend doped with silicon carbide (SiC) / multi-walled carbon nanotubes (MWCNTs) nanocomposites was successfully created. Nanocomposites (NPs) were evenly distributed over the polymer mix matrix, and the polymer blend was well dispersed in the solution, according to the optical microscopy image. The films’ surface morphology of the polymer blend exhibits a homogeneous grain distribution, according to FE-SEM examination. The generated materials do not include any new functional groups, according to the FTIR analysis, indicating that just a physical interaction has taken place. It was observed from the study of optical properties that the increase in SiC/MWCNTs nanoparticles led to enhancement of all optical features, such as absorbance, refractive index, optical conductivity, real and imaginary parts of the dielectric constant, while transmittance and energy gaps were decreased. The energy gap decreased from 4.8 eV to 3.82 eV for the allowed transition, and from 4 eV to 3.02 eV for the forbidden transition. These results reveal that PVA/PAA doped SiC/MWCNTs films can be utilized in a variety of advanced applications.
Keywords:
PVA, Nanocomposites, PAA, Energy gap, SiC, MWCNTs, Absorbance, Blend
References:
[1] J. Amalraj, P. Lakshmanan, C.A. Amarnath, R.D. Pyarasani, C. Saravanan, Biodegradable polymer blend nanocomposites for energy storage application. Polymer blend nanocomposites for energy storage applications, 2023: 175–202. https://doi.org/10.1016/B978-0-323-99549-8.00009-1
[2] J.-W. Li, C.-C. Cheng, C.-W. Chiu, Advances in Multifunctional Polymer-Based Nanocomposites. Polymers, 16(23), 2024: 3440. https://doi.org/10.3390/polym16233440
[3] K. Asim, M. Khalid, W. Ullah, M. Younas, I. Boukhris, M.G.B. Ashiq, Structural, dielectric and magnetic properties of MWCNTs coated magnesium spinel ferrites nanocomposites. Materials Research Bulletin, 188, 2025: 113433. https://doi.org/10.1016/j.materresbull.2025.113433
[4] X. Li, G. Zeng, X. Lei, The stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application. Solar Energy Materials and Solar Cells, 206, 2020: 110323. https://doi.org/10.1016/j.solmat.2019.110323
[5] J.-W. Li, C.-C. Cheng, C.-W. Chiu, Advances in Multifunctional Polymer-Based Nanocomposites. Polymers, 16(23), 2024: 3440. https://doi.org/10.3390/polym16233440
[6] O. Agboola, O.S.I. Fayomi, A. Ayodeji, A.O. Ayeni, E.E. Alagbe, S.E. Sanni, E.E. Okoro, L. Moropeng, R. Sadiku, K.W. Kupolati, B.A. Oni, A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes, 11(2), 2021: 139.
https://doi.org/10.3390/membranes11020139
[7] Y. Cheng, Y. Hu, M. Xu, M. Qin, W. Lan, D. Huang, Y. Wei, W. Chen, High strength polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel fabricated by Cold-Drawn method for cartilage tissue substitutes. Journal of Biomaterials Science, Polymer Edition, 31(14), 2020: 1836–1851.
https://doi.org/10.1080/09205063.2020.1782023
[8] Z. Liu, Y. Hu, Y. Gong, Y. Cheng, H. Yang, M. Kang, H. Ding, Z. Lei, Y. Wei, D. Huang, A facile method to fabricate high performance PVA/PAA-AS hydrogel via the synergy of multiple hydrogen bonding and Hofmeister effect. Journal of Biomaterials Science, Polymer Edition, 34(2), 2023: 243–257.
https://doi.org/10.1080/09205063.2022.2115759
[9] M.E. Diken, B. Koçer Kizilduman, B.Y. Kardaş, E.M. Doğan, M. Doğan, Y. Turhan, S. Doğan, Synthesis, characterization, and their some chemical and biological properties of PVA/PAA/nPS hydrogel nanocomposites: Hydrogel and wound dressing. Journal of Bioactive and Compatible Polymers, 35(3), 2020: 268–282. https://doi.org/10.1177/0883911520921474
[10] M. Govender, S. Indermun, P. Kumar, Y.E. Choonara, V. Pillay, 3D printed, PVA–PAA hydrogel loaded-polycaprolactone scaffold for the delivery of hydrophilic in-situ formed sodium indomethacin. Materials, 11(6), 2018: 1006. https://doi.org/10.3390/ma11061006
[11] D.A. Bichara, H. Bodugoz-Sentruk, D. Ling, E. Malchau, C.R. Bragdon, O.K. Muratoglu, Osteochondral defect repair using a polyvinyl alcohol–polyacrylic acid (PVA–PAAc) hydrogel. Biomedical Materials, 9(4), 2014: 045012. https://doi.org/10.1088/1748-6041/9/4/045012
[12] X. Liang, H.J. Zhong, H. Ding, B. Yu, X. Ma, X. Liu, C.M. Chong, J. He, Polyvinyl alcohol (PVA)-based hydrogels: Recent progress in fabrication, properties, and multifunctional applications. Polymers, 16(19), 2024: 2755. https://doi.org/10.3390/polym16192755
[13] Q. Huang, C. Wan, M. Loveridge, R. Bhagat, Partially neutralized polyacrylic acid/poly(vinyl alcohol) blends as effective binders for high-performance silicon anodes in lithium-ion batteries. ACS Applied Energy Materials, 1(12), 2018: 6890–6898. https://doi.org/10.1021/acsaem.8b01277
[14] P. Parikh, M. Sina, A. Banerjee, X. Wang, M.S. D’Souza, J.-M. Doux, E.A. Wu, O.Y. Trieu, Y. Gong, Q. Zhou, K. Snyder, Y.S. Meng, Role of polyacrylic acid (PAA) binder on the solid electrolyte interphase in silicon anodes. Chemistry of Materials, 31(7), 2019: 2535–2544. https://doi.org/10.1021/acs.chemmater.8b05020
[15] H. Ahmed, A. Hashim, Tuning the Spectroscopic and Electronic Characteristics of ZnS/SiC Nanostructures Doped Organic Material for Optical and Nanoelectronics Fields. Silicon, 15, 2023: 2339–2348. https://doi.org/10.1007/s12633-022-02173-w
[16] H.K. Jaafar, A. Hashim, B.H. Rabee, Fabrication and tuning the morphological and optical characteristics of PMMA/PEO/SiC/BaTiO3 newly quaternary nanostructures for optical and quantum electronics fields. Optical and Quantum Electronics, 55, 2023: 989. https://doi.org/10.1007/s11082-023-05208-7
[17] M. Nur-E-Alam, A Study on the Multifunctional Properties and Application Perspectives of ZnO/SiC Composite Materials. Inorganics, 13(7), 2025: 235. https://doi.org/10.3390/inorganics13070235
[18] H.A.J. Hussien, A. Hashim, Fabrication and Analysis of PVA/TiC/SiC Hybrid Nanostructures for Nanoelectronics and Optics Applications. Journal of Inorganic and Organometallic Polymers and Materials, 34, 2024: 2716–2727. https://doi.org/10.1007/s10904-024-03007-5
[19] N.A.-H. Al-Aaraji, A. Hashim, H.M. Abduljalil, A. Hadi, Tailoring the design, structure and spectroscopic characteristics of SiC/CuO doped transparent polymer for photonics and quantum nanoelectronics fields. Optical and Quantum Electronics, 55, 2023: 743. https://doi.org/10.1007/s11082-023-05048-5
[20] F. Stergioudi, A. Prospathopoulos, A. Farazas, E.C. Tsirogiannis, N. Michailidis, Mechanical Properties of AA2024 Aluminum/MWCNTs Nanocomposites Produced Using Different Powder Metallurgy Methods. Metals, 12(8), 2022: 1315. https://doi.org/10.3390/met12081315
[21] Y. Huang, J. Li, L. Wan, X. Meng, Y. Xie, Strengthening and toughening mechanisms of CNTs/Mg-6Zn composites via friction stir processing. Materials Science and Engineering: A, 732, 2018: 205–211.
https://doi.org/10.1016/j.msea.2018.07.011
[22] S.R. Bakshi, A. Agarwal, An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon, 49, 2011: 533–544. https://doi.org/10.1016/j.carbon.2010.09.054
[23] J.G. Park, D.H. Keum, Y.H. Lee, Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon, 95, 2015: 690–698. https://doi.org/10.1016/j.carbon.2015.08.112
[24] L. Jiang, G. Fan, Z. Li, X. Kai, D. Zhang, Z. Chen, S. Humphries, G. Heness, W.Y. Yeung, An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon, 49(6), 2011: 1965–1971. https://doi.org/10.1016/j.carbon.2011.01.021
[25] Y. Zhang, X. Li, H. Chen, Synergistic effects of SiC and MWCNTs on the thermal and mechanical performance of polymer composites. Composites Science and Technology, 237, 2023: 110364. https://doi.org/10.1016/j.compscitech.2023.110364
[26] A.A. Al-Muntaser, E. Alzahrani, G.M. Asnag, A.Y. Yassin, Tailoring Structural, Optical, and Dielectric Properties of PVC/PMMA/PS/ZnO Nanocomposites for Capacitive Energy Storage Applications. ECS Journal of Solid State Science and Technology, 14(3), 2025: 033001. https://doi.org/10.1149/2162-8777/adb992
[27] A.A. Al-Muntaser, S.A. Al-Ghamdi, E. Alzahrani, A. Rajeh, G.M. Asnag, A.M. Al-Harthi, R. Alwafi, A. Saeed, S. Aldwais, A.Y. Yassin, Investigation of structural and optical characteristics of PVA/crystal violet dye composites for flexible smart optoelectronic applications. Journal of Polymer Research, 31, 2024: 311. https://doi.org/10.1007/s10965-024-04160-8
[28] A.A. Al-Muntaser, E. Alzahrani, A. Saeed, S.A. Al-Ghamdi, R. Alwafi, H.M. Abo-Dief, A.Y. Yassin, Exploring the influence of sudan IV Azo dye on the structural, optical, and dispersion characteristics of PVA/Su-IV composites. Physica Scripta, 99(10), 2024: 10105991. https://doi.org/10.1088/1402-4896/ad79a2
[29] N.A. Kattan, E. Alzahrani, M.A. Morsi, G.M. Asnag, A.A. Al-Muntaser, S.H. Khoreem, A.Y. Yassin, Optimizing PEO/HPMC polymer blends with Al2O3/MoO3 as hybrid nanofiller for enhanced dielectric performance and energy storage systems. Reactive and Functional Polymers, 216, 2025: 106432. https://doi.org/10.1016/j.reactfunctpolym.2025.106432
[30] A.A.A. Ahmed, A.M. Al-Hussam, A.M. Abdulwahab, A.N.A.A. Ahmed, The impact of sodium chloride as dopant on optical and electrical properties of polyvinyl alcohol. AIMS Materials Science, 5(3), 2018: 533-542. https://doi.org/10.3934/matersci.2018.3.533
[31] A.M.A. Henaish, A.S. Abouhaswa, Effect of WO3 nanoparticle doping on the physical properties of PVC polymer. Bulletin of Materials Science, 43(1), 2020: 149. https://doi.org/10.1007/s12034-020-02109-3
[32] K. Mahalakshmi, V. Lakshmi, S.D.C. Anitha, R. MaryJenila, Optical, structural and morphological analysis of rGO decorated CoSe2 nanocomposites. International Journal of Innovative Science Engineering & Technology, 8(2), 2021: 180-192. https://ijiset.com/vol8/v8s2/IJISET_V8_I02_16.pdf
[33] G. Santhosh, G.P. Nayaka, B.S. Madhukar, Siddaramaiah, Optical properties of PVP/Li3GaO3 nanocomposites. Materials Today: Proceedings, 4, 2017: 12061-12069.
https://doi.org/10.1016/j.matpr.2017.09.131
[34] P.O. Amin, K.A. Ketuly, S.R. Saeed, F.F. Muhammadsharif, M.D. Symes, A. Paul, K. Sulaiman, Synthesis, spectroscopic, electrochemical and photophysical properties of high band gap polymers for potential applications in semi-transparent solar cells. BMC Chemistry, 15, 2021: 25. https://doi.org/10.1186/s13065-021-00751-4
[35] A.O. Salohub, A.A. Voznyi, O.V. Klymov, N.V. Safryuk, D.I. Kurbatov, A.S. Opanasyuk, Determination of fundamental optical constants of Zn2SnO4 films. Semiconductor Physics, Quantum Electronics & Optoelectronics, 20(1), 2017: 79-84. https://doi.org/10.15407/spqeo20.01.079
[36] A. El-Sayed, S.H. El-Sabbagh, M.A. Abdelwahab, A.I. Abd El-Fattah, FTIR evidence of interfacial interaction in polymer/CNT nanocomposites. Polymer Testing, 124, 2023: 108031.
https://doi.org/10.1016/j.polymertesting.2023.108031
[37] A. Hashim, A. Hadi, M.H. Abbas, Synthesis and Unraveling the Morphological and Optical Features of PVP-Si3N4-Al2O3 Nanostructures for Optical and Renewable Energies Fields. Silicon, 15, 2023: 6431–6438. https://doi.org/10.1007/s12633-023-02529-w
[38] A. Kareem, A. Hashim, H.B. Hassan, Ameliorating and tailoring the morphological, structural, and dielectric features of Si3N4/CeO2 futuristic nanocomposites doped PEO for nanoelectronic and nanodielectric applications. Journal of Materials Science: Materials in Electronics, 35, 2024: 461. https://doi.org/10.1007/s10854-024-12278-0
[39] M.H. Abdel-Kader, M.B. Mohamed, T. Alharby, R.M. Ibrahim, UV-irradiation effects on the structural, optical and electrical characteristics of soft blended polymeric materials loaded with multi-walled carbon nanotubes (MWCNTs). Journal of Macromolecular Science, Part B, 64(5), 2025: 531–554.
https://doi.org/10.1080/00222348.2024.2357916
[40] S. Prakasam, N. Maharajan, G. Krishnan, S. Chinnathambi, Surface defect and composite effect triggered sensitivity enhancement in cobalt oxide-MWCNT nanostructure for electrochemical determination of chloramphenicol. Microchemical Journal, 216, 2025: 114705. https://doi.org/10.1016/j.microc.2025.114705
[41] A. Hakamy, Investigation of double-layer capacitance, Warburg finite-length impedance and AC conductivity of PVA/MWCNT nanocomposite films for supercapacitor applications. Journal of Power Sources, 656, 2025: 238032. https://doi.org/10.1016/j.jpowsour.2025.238032
[42] P. Awandkar, S. Yawale, Exploring structural and optical properties of MWCNT @polymer based composites and implicating its application toward CO₂ gas detection at room temperature. Ceramics International, 51(25), 2025: 45994-46010. https://doi.org/10.1016/j.ceramint.2025.07.313
[43] Ravina, G. Srivastava, S. Kumar, N.K. Gautam, S. Dalela, M.A. Ahmad, A.M. Quraishi, P.A. Alvi, Exploration of optical, structural, and electrochemical properties of ZnO/MWCNTs nanocomposites for usage in supercapacitor. Journal of Energy Storage, 125, 2025: 116844. https://doi.org/10.1016/j.est.2025.116844
[44] H.S. Alzahrani, A.I. Al-Sulami, Q.A. Alsulami, A. Rajeh, A systematic study of structural, conductivity, linear, and nonlinear optical properties of PEO/PVA-MWCNTs/ZnO nanocomposites films for optoelectronic applications. Optical Materials, 133, 2022: 112900. https://doi.org/10.1016/j.optmat.2022.112900
[45] H.K. Jaafar, A. Hashim, B.H. Rabee, Synthesis and Boosting the Morphological and Optical Characteristics of SiC/SrTiO3 Nanomaterials Doped PMMA/PEO for Tailored Optoelectronics Fields. Silicon, 16, 2024: 603–614. https://doi.org/10.1007/s12633-023-02706-x
[46] A.M.M. Ibrahim, A. Abou Elfadl, A.M. El Sayed, I.M. Ibrahim, Improving the optical, dielectric properties and antimicrobial activity of chitosan–PEO by GO/MWCNTs: Nanocomposites for energy storage and food packaging applications. Polymer, 267, 2023: 125650. https://doi.org/10.1016/j.polymer.2022.125650
[47] M.V. Bindu, G.M. Joselin Herbert, Experimental investigation of stability, optical property and thermal conductivity of water based MWCNT–Al₂O₃–ZnO mono, binary and ternary nanofluid. Synthetic Metals, 287, 2022: 117058. https://doi.org/10.1016/j.synthmet.2022.117058
[48] A.M. El Sayed, Synthesis, optical, thermal, electric properties and impedance spectroscopy studies on P(VC-MMA) of optimized thickness and reinforced with MWCNTs. Results in Physics, 17, 2020: 103025. https://doi.org/10.1016/j.rinp.2020.103025
© 2025 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
S.A. Jasim, A.M. Ali, N.M.L. Al Maimuri, A. Hashim, M.H. Abbas, Engineering the Microstructure and Optical Features of SiC-MWCNTs Nanoparticles Doped PVA-PAA for Promising Industrial Applications. Applied Engineering Letters, 10(4), 2025: 234-244.
https://doi.org/10.46793/aeletters.2025.10.4.5
More Citation Formats
Jasim, S.A., Ali, A.M., Al Maimuri, N.M.L., Hashim, A., & Abbas, M.H. (2025). Engineering the Microstructure and Optical Features of SiC-MWCNTs Nanoparticles Doped PVA-PAA for Promising Industrial Applications. Applied Engineering Letters, 10(4), 234-244.
https://doi.org/10.46793/aeletters.2025.10.4.5
Jasim, Saad Abbas, et al. “Engineering the Microstructure and Optical Features of SiC-MWCNTs Nanoparticles Doped PVA-PAA for Promising Industrial Applications.“ Applied Engineering Letters, vol. 10, no. 4, 2025, pp. 234-244.
https://doi.org/10.46793/aeletters.2025.10.4.5
Jasim, Saad Abbas, Ali Mohammed Ali, Najah M. L. Al Maimuri, Ahmed Hashim, Mohammed H. Abbas. 2025. “Engineering the Microstructure and Optical Features of SiC-MWCNTs Nanoparticles Doped PVA-PAA for Promising Industrial Applications.“ Applied Engineering Letters, 10 (4): 234-244.
https://doi.org/10.46793/aeletters.2025.10.4.5
Jasim, S.A., Ali, A.M., Al Maimuri, N.M.L., Hashim, A. and Abbas, M.H. (2025). Engineering the Microstructure and Optical Features of SiC-MWCNTs Nanoparticles Doped PVA-PAA for Promising Industrial Applications. Applied Engineering Letters, 10(4), pp. 234-244.
doi: 10.46793/aeletters.2025.10.4.5.
