

Applied Engineering Letters Vol.4, No.4, 107-114 (2019) e-ISSN: 2466-4847

CONTACT: Dj. Dihovični, e-mail: ddihovicni@gmail.com © 2019 Published by the Serbian Academic Center

FILTERING DATA FOR THE SALE OF MACHINE PARTS IN ASP.NET CORE
WEB APPLICATIONS USING MVC DEVELOPMENT TECHNOLOGY

 UDC: 004.738.12:004.658
Original scientific paper https://doi.org/10.18485/aeletters.2019.4.4.1

Andrea Vujić1, Djordje Dihovicni1*

1Technical College, Bulevar Zorana Djindjica 152a, Belgrade, Republic of Serbia

Abstract:
In this paper it is presented how to create a part of a dynamic website that
is used to filter data and create a user basket for online purchase of
machine products. It is explained how the ASP.Net Core 2.2 MVC technology
works. The difference between code first and database first access is shown
as well as are different ways to implement a database into a project. This
project was built gradually starting from system setup, through the creation
of a database that was customized to customer needs, until the layout itself,
in which are used markup and styling languages such as HTML5 and CSS.

ARTICLE HISTORY
Received: 13.09.2019.
Accepted: 14.10.2019.
Available: 31.12.2019.

KEYWORDS
MVC, ASP.NET, C#, Web,
Database, HTML, CSS

1. INTRODUCTION

MVC (Model - View - Controller) is a high-level
architectural layer for creating web applications
based on an open source MVC form. The first
version of ASP.Net MVC was released in May 2009,
evolving until version 6.0 to expand further from
May 2016 to the open-source version of ASP.Net
Core MVC 1.0, [1]. The latest version of .Net Core
2.2 came out in December 2018. MVC architecture
is based on the idea of reusing existing software
code, facilitating the development and subsequent
maintenance of application software, and splitting
it into special components: model (Model), data
view (View) and controller (Controller), with the
information display component separated from
user interactions with those information. MVC
architecture consists of specific components in
which each is assigned to perform specific
functions, [2]. Such a solution is much better than
previous one-in-one solutions, which made it
difficult to read the source code, make it difficult
to find and debug, as well as significantly less
functionality and flexibility.

Norwegian computer scientist Trygve
Reenskaug first introduced the MVC architecture
applied to the Smalltalk-76 during his visit to the
Xerox Palo Alto Research Center (PARC) in the

1970s. Then, in the 1980s, Jim Althoff and others
used the MVC version of the Smalltalk-80 class
library. It was not until a 1988 article that MVC was
introduced as a separate term.

Today's classic MVC approach places all logic on
the web server, while new technologies (Ajax,
AngularJS, AmberJS, JavaScriptMVC, Backbone)
allow MVC components to be partially executed on
the client side as well [3-4].

CSS (Cascading Style Sheet) is a set of rules that
allow the formatting or positioning of elements of
a Web page. CSS provides a standard way that
describes how a browser will display content on a
Web page, [5-7]. The CSS selector defines the
element or group of elements to which the rule
applies.

Each CSS rule has the same basic syntax that
looks like this:

selector{
property1: value;
property2: value;
…
}

Each CSS rule has a first selector tag followed by

a curly bracket. Inside the curly brackets, some CSS

mailto:vujic.andrea95@.gmail.com

A. Vujić and Dj. Dihovični / Applied Engineering Letters Vol.4, No.4, 107-114 (2019)

 108

properties are specified, followed by a certain
value, and after that value a semicolon (;).

There are three types of selectors:
Element selector (e.g. h2 () that returns all h2

elements),
A class selector (e.g. .blue () that returns all

elements whose class attribute is set to blue) and
Id selector (#id () that returns an element with

the given id).
Through CSS, the user can create the style

independently, and can also use the finished style
sheets, [8-9].

There are three basic ways to add styles to a
Web page:

Internal style sheet (page-level formatting) i.e.
<style> </style> elements within the header of a
web page, adding a link to an external style sheet
global formatting and adding inline styles i.e.
formatting for a specific html element.

2. MVC ARCHITECTURE

The MVC architecture is divided into three

interconnected layers, Model, View, and Controller.
The model processes data received through the

Controller, it represents one or more classes with
their states that can be displayed at the request of
the View or can be modified by the Controller. The
folder models is presented at Figure 1.

Fig.1. Folder Models

 The model contains major program data, such
as information about objects from the database
[10-12]. It consists of a set of classes that model
and support application troubleshooting. It is
usually a stable component, lasting as long as the
problem itself.

All the business logic of the application is
contained in the model. There are several ways to
construct a skeletal model. Specifically, a
programmer can first construct a model, define

classes and attributes within classes, and later,
based on the class, form a database. This is called
code-first access. All data can be obtained through
the model [13-15], but the model cannot be called
directly, rather, it is done through a controller, in
the form of a request. This request is then
processed by the model and returned to the
controller with the necessary data. The controller
further displays the received data to the end user.
 The code for creating one model is shown
below:

namespace WorkShop.Models
{
[Table (“Product”)]
 public partial class Product
 {
 public int ProductId {get; set; }
 public int CategoryId {get; set; }
 [Required]
 [StringLength (120)]
 public int Name {get; set; }
 [Column (TypeName = “decimal (10.2)”)]
 public int Price {get; set; }
 [StringLength (120)]
 public int Description {get; set; }
 [ForeginKey (“CategoryId”)]
 [InverseProperty ("Products")]
 public virtual Category Category {get; set;}
 }
}
 Square brackets that are printed above the
fields, are called annotations and serve to better
describe the field and to add additional values to it,
such as the required field [Required] or the
number of characters allowed to enter
[StringLength (120)].
 The controller interprets the user's request and
forwards it to Model or View components. The
controller interprets the input of the user and
passes it to Model or View. It decides how the
model should change as a result of user input and
which View to use. The folder controllers are
shown at Figure 2.

Fig.2. Folder Controllers

A. Vujić and Dj. Dihovični / Applied Engineering Letters Vol.4, No.4, 107-114 (2019)

 109

 The controller represents the mediator
between the data view and the model. It contains
the main mechanisms for controlling the flow of
the program, that is, the behavior of the
application itself, and manages user requests. It is
the most demanding part of the application
programmatically. The controller interprets the
user input and passes it to the model or displays it
to the user. It contains some of the application
logic and has the ability to influence the state of
the model, or to decide how the model should be
changed, as a result of user requirements, and how
the data will be displayed [16-18].
 View is responsible for viewing the data
according to the changes in the model, as it is
described at Figure 3.

Fig.3. Folder View

 View is the last layer of the MVC architecture,
containing the application environment, or
providing different ways of representing model
data through the controller. It is printed in HTML
but with the help of Html and tag helpers code can
be implemented in C # language, [19-20].
 The user can only see what is seen in this
component, while the model and controller are
usually hidden from the user. The most important
feature of this component is its simplicity because
it is a visual representation of the model that
contains display methods and allows the user to
change the data.
 In addition to splitting the application into three
separate components, the MVC architecture also
enables interaction between them:

View - shows the user the state of the model,
provides the user interface through which the user
enters the data and calls the appropriate
operations to be performed on the data.
Controller - listens to and accepts requests from
the client to perform an operation, then invokes

the operation defined in the model, and if the
model changes status, displays it to the user.
Model - represents the state of the system that
can be changed by performing operations on
objects in the data model. The model has nothing
to do with how the data is managed or how the
data is presented to the user.
 It is important to remember that the display in
the user environment and controls are dependent
on the model, while the model does not depend
on the view or on the component controller, which
allows the model to be developed and tested
independently of its presentation logic. The web
application receives some request or data from the
user, the web server recognizes the request and
processes the data based on the built-in business
logic. The result of the process is a web page that
will be displayed to the user. In doing so, the data
can be stored in files or in a database.
 Using MVC provides the ability to view models
in different ways, and make it easier to process
and add new or modify existing reports, modify
user interaction, and modify business logic.
 There are two ways to create .Net Core
applications based on Entity Framework, code first
and database first access. With code first access, a
class model was created and a database was
created based on it, while database first access
created a database first and based on that
database its model class was created through
scaffolding.

3. CREATING A .NET CORE APPLICATION

In this example, it will be addressed one of the

ways in which data is filtered in .Net Core Web
applications, via database first access. To start
creating an application, it is important to set up
the system based on our needs. The system is
configured in the Startup.cs file that contains the
services, connections and objects that are required
for operation. The first thing to do after setting up
the system in the Startup.cs file is to create a
system database. Within the Data folder a class
named ApplicationUser is created and endowed
with properties that are necessary for the
registration of new users. There is also one Context
class called ApplicationDbContext added to this
class and configured to work with the
ApplicationUser class. The Startup.cs file modifies
the Identity System service so that it also works
with the ApplicationUser class and not with its
base IdentityUser class. The next thing that is done
is creating an identification database through

A. Vujić and Dj. Dihovični / Applied Engineering Letters Vol.4, No.4, 107-114 (2019)

 110

Scaffolding. This generated a new folder called
Areas. Within that folder is the Identity folder and
inside it a Pages subfolder that has its own
subfolder called Account. The Account subfolder
provides logging, registration, and logout views as
well as their models. Migrations are used to keep
the data that needs to be entered in the database
up to date. The following is typed in the Package
Manager console:

Add Migration Migration Name –Context

ApplicationDbContext

When updating the migration database, it is

indicated which Context class should be updated
by adding –Context and the name of the Context
class after Add Migration. After the system for user
identification was set up, the database for logging
through Entity Framework was created and the
following script was executed inside:

CREATE TABLE Buyer (
BuyerId nvarchar (300) NOT NULL PRIMARY

KEY,
Name nvarchar (30) NOT NULL,
Surname nvarchar (30) NOT NULL,
Country nvarchar (30) NOT NULL DEFAULT

'Serbia',
City nvarchar (30) NOT NULL,
Address nvarchar (100) NOT NULL
);
GO

CREATE TABLE Shopping (
ShoppingId int IDENTITY (1,1) PRIMARY KEY,
BuyerId nvarchar (300) NOT NULL FOREIGN KEY

REFERENCES Buyer (BuyerId),
DateBuy datetime NOT NULL DEFAULT

GETDATE ()
);
GO

CREATE TABLE CategoriesMachine Parts (
CategoriesId int IDENTITY (1,1) PRIMARY KEY,
Name nvarchar (100) NOT NULL
);
GO

SET IDENTITY_INSERT ID ON
INSERT INTO CategoriesMachine Parts

(CategoriesId, Name) VALUES (1, 'Pumps')
INSERT INTO CategoriesMachine Parts

(CategoriesId, Name) VALUES (2, 'Valves')

INSERT INTO CategoriesMachine Parts
(CategoriesId, Name) VALUES (3, 'Actuators')

INSERT INTO CategoriesMachine Parts
(CategoriesId, Name) VALUES (4, 'Reducers')

INSERT INTO CategoriesMachine Parts
(CategoriesId, Name) VALUES (5, 'Manifolds')

SET IDENTITY_INSERT CategoriesMachine Parts
OFF

GO

CREATE TABLE MachinePartsOffer (
PartsOfferId int IDENTITY (1,1) PRIMARY KEY,
CategoriesId int FOREIGN KEY REFERENCES

CategoriesMachineParts (CategoriesId) NOT NULL,
Manufacturer nvarchar (50) NOT NULL,
Name nvarchar (20) NOT NULL,
Type int NOT NULL,
Model nvarchar (20) NOT NULL,
Price decimal (10,2) NOT NULL,
Description nvarchar (900) NULL
);
GO

INSERT INTO OfferMachine Parts (CategoriesId,

Price, Manufacturer, Name, Type, Model,
Description) VALUES (1, CAST (1200 AS Decimal
(10,2)), 'DAVID BROWN', 'Pump', 'Gear Pump',
'With stand mounting, with flanges together with
oil tank ',' DAVID BROWN gear pumps have found
wide application in our market. Robust, compact,
easy to install and minimal maintenance are the
reasons why they are used in all areas of the
industry. ')

INSERT INTO OfferMachine Parts (CategoriesId,

Price, Manufacturer, Name, Type, Model,
Description) VALUES (2, CAST (800 AS Decimal
(10,2)), 'DAVID BROWN', 'Valve', 'TYPE 3022',
'Electromagnetic , ball, butterfly, latches, shut-off
',' NPT thread 0d 1/4 "to 4", full ball opening,
chrome-plated brass body, PTFE seats, thread F / F
ends, maximum temperature 180 ° C, PN 25,
manually operated, steel handle ')

INSERT INTO OfferMachine Parts (CategoriesId,

Price, Manufacturer, Name, Type, Model,
Description) VALUES (3, CAST (1500 AS Decimal
(10,2)), 'DAVID BROWN', 'Actuator', 'SAR 07.1-
16.1', 'II - 409 Beck rotary electronic control drive',
'Actuators are supplied from the simplest OPEN -
CLOSE modes, with high protection, with explosion
protection to allow safe process automation to the
most complex modes with full rotation or partial
rotation. ')

A. Vujić and Dj. Dihovični / Applied Engineering Letters Vol.4, No.4, 107-114 (2019)

 111

INSERT INTO Machine Parts Offer (CategoriesId,
Price, Manufacturer, Name, Type, Model,
Description) VALUES (4, CAST (1600 AS Decimal
(10,2)), 'FALK', 'Reducer', 'Ultramax Gear Unit',
'2060FC2A Ratio i = 2.827 ',' Gearboxes are
mechanical power transmissions that are used to
transfer power from the drive machine to the
machine and adjust the speed at the drive shaft to
the required speed at the machine shaft. ')

INSERT INTO Machine Parts Offer (CategoriesId,

Price, Manufacturer, Name, Type, Model,
Description) VALUES (5, CAST (1200 AS Decimal
(10,2)), 'NORGREN', 'Manifold', '5/2 and 5/3
electromagnetic and pneumatic actuated valve ','
Reciprocating, rotary, plate, valve ',' Switch the
mechanical structure composed of a solid
mechanical elements. they are used to start, stop
and direction of energy i.e., the flow of the
compressed air in the tires or the flow of oil under
pressure in the hydraulics The manifold is
practically the executive body of the control
system and performs the commands created by
the control logic. It should be emphasized that the
manifold valve is not designed to perform control
tasks, therefore it cannot change the intensity of
pressure or flow. The principle of operation of
hydraulic and pneumatic manifolds is almost
identical, and the symbols are practically the same
except that the connections are marked with other
gachies. ')

CREATE TABLE Basket
(
ID int IDENTITY (1,1) NOT NULL PRIMARY KEY,
ShoppingId int NOT NULL FOREIGN KEY

REFERENCES ShoppingId,
ID int NOT NULL FOREIGN KEY REFERENCES

CategoriesMachine Parts (ID),
Quantity int NOT NULL
);
GO

This script provides the tables necessary to

connect customers to the basket that will store the
items the customer wants to buy. The script
contains a table listing the categories of machine
parts, a table listing the parts themselves on offer,
a table relating to the customer and his order, and
a basket table representing the header of the
invoice. It is a table that associates a foreign key
with the customer table and the shopping table
and adds to it only the quantity of products
purchased. The data in the customer table is

automatically entered by logging the user to the
site.

Further within the Register.cshtml.cs class, the
Post registration method is modified and the
application's DbContext is accessed. Data is taken
from the ApplicationUser object to create a user
class object. From the AspNet.Users system table
that takes care of users and is created with the
Entity Framework, the data is copied to the user
table. The central database table is a basket table
because a basket consists of multiple items, and
each item belongs to a specific order. The basket
table specifies the product that was purchased and
the quantity of product purchased. It is
characteristically that a single product cannot
appear repeatedly as an order item. When data is
entered into the database, an order is first created,
and an order is created by inserting the customer
ID to which the order relates. The order date is
automatically entered as well as the order ID, so
that the items selected by the user can be tracked
and these items are further inserted into the
basket table. Communication with the database
takes place as soon as the contents of the
consumer basket are fully defined.

Within the Models folder a class named
BasketItem is created, this is a class that has an
automatic property Product - type product and
automatic property Quantity - type quantity, those
are the basket items, the left column is a product
and contains the product name, price, quantity of
product purchased, etc.

Consumer basket data cannot be stored inside
the controller because each new request creates a
new controller and thus the old data will be lost.
This is why this data is stored within a user session.
A session is one object that is stored in server
memory that has its keys and values. Keys and
values stored inside a session are strings. In this
case, not only strings can be used to preserve the
entire consumer basket and therefore extensions
are used. In SolutionExplorer, a folder called
Extensions was created and a new class was
created inside it called SessionExtensions. An
extension class is a static class and contains all
static methods. As for the session itself, it can only
be accessed inside the controller. The session must
be registered as a service and must also be
registered within the Middleware component. If a
session is accessed from a class other than the
controller class, two new accessors are added to
the services, IHttpContextAccessor and
HttpContextAccessor.

A. Vujić and Dj. Dihovični / Applied Engineering Letters Vol.4, No.4, 107-114 (2019)

 112

A static class that contains two static methods
called SessionExtensions has been created. A
method has been created for serialization and for
deserialization of data. The goal of these methods
is to keep the entire consumer basket under lock
and key by using the JsonConvert class. With the
serialization method, the string is stored under a
key and the entire basket class object is serialized,
and the basket class object contains everything
that the user has purchased while visiting the site.
The deserialization method works the other way
around, it contains the session variable and the
JsonString assigned to that session variable. A key-
based method approaches that session variable
that represents the contents of the basket,
performs deserialization, and creates a basket class
object. A Basket class can now be created. This
class serves to provide information with the
consumer basket. The basket saves the data in the
form of a generic list of type BasketItem. The
basket class has as its field a generic list of basket
item types and now additional methods can be
inserted into it. An AddItem method has been
created that has the product and the quantity of
that product as input parameters, this method
checks if a product with a given ID is already in the
basket, if not, if the item is the same as NULL, a
new item is created by specifying a specific
product and quantity per product purchased, and
that item is added to the ListItems object. If the
item is not NULL it means that it is already in the
basket and only the quantity is further
incremented. Next, a method has been created to
manipulate the list. The DeleteItem method allows
an item to be deleted from a list. To do this, it is
enough to just pass the ID of that particular
product. An item from the generic list whose
product ID is the same as the given ID is found and
then the Remove method is called and this item is
ejected from memory. The ChangeItem method
specifies a product and specifies a new quantity for
that product. First, it was checked to see if that
product was found as a basket item. The
BasketValue method allows the user to know the
value of the basket at any time. The code block
goes through a generic list that stores items and
for each member of the generic list accesses the
product. The item as its property contains the
product from which its price is taken, and from the
item itself quantity. When the quantity is
multiplied by the price, the value of the item is
obtained. The DeleteBasket method, as its name
implies, gives the ability to delete all data from the
recycle bin i.e. to wipe the basket. This is

accomplished by deleting the entire collection of
items:

list Items.Clear ();

When the creation of the Basket class was
completed, a new folder called Services was
created in SolutionExplorer, where the
BasketServis class was further created. The task of
this class is to search for a session variable and to
create an object of the basket class on the basis of
it, or vice versa, to store the corresponding value in
the session variable based on the object of the
class basket. An IhttpContextAccessor accessor is
defined within the BasketService class to allow
access to a session variable outside the controller.
This accessor accesses the session, when accessing
the session the key under which the basket is
serialized can be read. In order to read the current
contents of the basket, or vice versa, the contents
of the basket are serialized within the basket. The
SaveBasket method accesses the session in which
the SerializeBasket method is located. The
contents of the basket are the product and the
quantity of the product, the entire contents of the
basket class are stored within the session variable
as a key. The ReadBasket method works the other
way around, it reads a session variable.mJsonString
was added to the session variable, based on the
JsonString and the DeserializeBasket method, an
object of the basket class is created, which is what
our service does. This service is defined as a
scoped service because it is session related. For
this reason, it is also defined in the Startup class.
The role of this service is to serialize a basket
within a session variable or deserialize that session
variable into a basket class object.

The next item on the list is to create a controller
that works with the basket, called the
BasketController. It has the same methods as the
Basket class, however, every time we insert a new
product into the cart, we invite BasketServis to
store that information within the session variable.
That session variable is named the same as the
key. The value of the basket is the contents of the
basket serialized in Json, which has a DbContext
and a service that is inserted through a DI
container. The basket field fills the basket service
as follows

BasketService.ReadBasket ();

This means in translation: when a controller, a

basket controller is instantiated, it checks if there

A. Vujić and Dj. Dihovični / Applied Engineering Letters Vol.4, No.4, 107-114 (2019)

 113

is stored data for an existing basket, if any, it will
create a basket class object, and if not, it will
create an empty basket class object.

In this case, within the Index Action method,
there is only an Index Action to which the basket
object is passed. As the customer purchases, he
adds one product at a time to the cart. The
product is added to the cart by calling the AddItem
method. The AddItem method obtains a product ID
using a hidden field, if a product already exists, it is
first added to the basket object that was created
by deserializing the session variable. In order for
this data to be stored and made available for later,
a basket service is called which re-serializes that
data within the session variable. In this case, it
always returns to the Index page because the task
of this controller is to display the contents of the
basket, to give a user interface that will allow the
product to be thrown out of the basket, and to
display a user interface that will allow the quantity
of products in the basket to be changed. The user
can see the contents of the basket and possibly
later buy that content. The basket view index as a
model directive has the Basket model, which has a
generic list containing items and methods for
working with the basket. In Index view via HTML, a
chart is drawn by looking at the contents of the
basket. The Foreach loop passes through the
basket items from the model.

The next step is creating a shopping controller
that is called by clicking the Buy button. It's called
the BasketController. Creating this controller
requires the DbContext class StoreContext. Now it
is needed to move data from a session to a
database, a UserManager is needed to read which
user wants to buy products, as well as a basket
service (instantiated as kService) that will convert
the session to a basket class object at any
time. The constructor requires inserting a
DbContext object (_db), inserting a UserManager
(_um), and instantiating a service (_kService). The
index method is authorized by an appropriate
annotation. This means that no purchase can be
made until the user logs in to the system. Index
method first calls the method ReadBasket, this
method looks at the session variable and tells
whether or not there is data inside the session
variable. When it looks for a session variable, it
creates a basket class object. If the number of
items in the basket is 0, it means that the basket is
empty, the system does not communicate with the
database but calls the index action of the
HomeController. Code line

ApplicationUser user =
await um.GetUserAsync (User);

serves to access the logged in user. Since this
method is authorized, it cannot be invoked unless
the user is logged in. If the user is satisfied with the
contents of the basket and wants to make a
purchase, clicking the Buy button first opens the
Index action of the HomeController, which asks the
user to sign up for the service. When typing in the
data and logging in, a view of the
PurchaseController is displayed. First, the user who
wants to buy the selected products is read.
Throuhg the UserManager the user ID required for
the data to be entered in the Order table is found.
After that, the Order class is instantiated by using
the logged-in user ID as the customer ID, and the
purchase date is the date when the Buy button
was pressed, the moment when the user is
completely satisfied with the contents of the
basket. Next, the order that is the invoice header is
instantiated. It consists of items. The order object
is inserted as follows:

db.Orders.Add (o1);

The SaveChanges () method is then called. This
method records the data in the order table. An
order ID is taken from that table to insert order
related items. Items are accessed by going through
the foreach loop through all the items in the
basket. A basket object is created using a service
basket and has items as its property. Since the
Items table is already in the database, an instance
of the Item class is created based on the items in
the basket. The item contains the order ID, product
ID, and quantity. The order ID is the order that was
just inserted. As the items go through the foreach
loop, it is concluded that the entry in the Item
table is repeated as many times as the items are
entered into the basket. The basket as a whole is
deleted using the service basket with the code:

kServis.DeleteBasket ();

this frees up the session variable and ends the
order.

4. CONCLUSIONS

There are many advantages to creating web

applications using MVC architecture and some of
them are easier adding of new data views, creating
models in multiple ways, easy interaction with the

A. Vujić and Dj. Dihovični / Applied Engineering Letters Vol.4, No.4, 107-114 (2019)

 114

user, the ability to collaborate on projects with
multiple developers, the ability to reuse code, etc.
The disadvantages of MVC architecture are that it
is too complex to be used in the development of
smaller applications, which leads to a deterioration
in both its design and its features, as well as
frequent modifications of the model that cause
data presentation to remain overburdened by
changes in requirements, which may delay the
response on demand.

REFERENCES

[1] M. Abdul, R. Abdisam, MVC Architecture: A

Detailed Insight to the Modern Web Applications
Development. Journal of Solar and Photo energy
Systems, 1 (1), 2018: 1-7.

[2] K. Czarnecki, M. Antkiewicz, Mapping Features to
Models: A Template Approach Based on
Superimposed Variants. International Conference
on Generative Programming and Component
Engineering, Vol.3676, 2005, pp.422-437.
https://doi.org/10.1007/11561347_28

[3] A. Ašonja, D. Mikić, E. Desnica, Ž. Adamović,
Justifiability of Execution of Serbian Teleservice in
Industry. Acta Technica Corvininesis - Bulletin of
Engineering, 8 (3), 2015: 77-79.

[4] D. Tamal, A Comparative Analysis on Modelling
and Implementing with MVC Arhitecture,
International Journal of Computer Applications, (3),
2011: pp 44-49.

[5] Le Blanc Patrick, Microsoft SQL Server 2012.
O'Reilly Media Inc., California, 2013.

[6] H. Monga, S. Baghla., Approach to security in
wireless sensors networks. Applied Engineering
Letters, 1, (3), 2016: 80-84.

[7] P. Nielsen, Microsoft SQL Server 2008 Bible. Wiley
Publishing, Inc., Indianapolis, USA, 2008.

[8] Dj. Dihovicni, M. Medenica, Database linear of
scalability and high availability while maintaining a
system performance, 10

th
 International Scientific

Conference "Science and Higher Education in
Function of Sustainable Development", Uzice,
Serbia, 2017, Section 2, pp.45-53.

[9] Dj. Dihovicni, M. Medenica, Fuzzy support model
for long pipelines by using DB2 approach. Applied
Engineering Letters, 2 (2): 2017: 76-83.

[10] S. Raman, H. Baghla, Monga, Method &
Implementation of Data Flow. Applied Engineering
Letters, 1, (4), 2016: 105-110.

[11] K. Kevin, Cryptography in the Database: Last Line
of Defense. Addison-Wesley, 2005.

[12] D. Pleskonjić, N. Maček, B. Đorđević, M. Carić,
Sigurnost računarskih sistema i mreža. Mikro
knjiga, Beograd, 2007.

[13] A. Veljović, N. Gojgić, Projektovanje baza
podataka. VŠTSS, Čačak, 2006.

[14] L. Ramkilde Knudsen, New Potentially 'Weak' Keys
for DES and LOK. Springer Link, 1995.

[15] K. Kenan, Cryptography in the Database. Symantec
Press, 2006.

[16] N. Galbreath, Cryptography for Internet and
Database Applications. Wiley Publishing, Inc. 2002.

[17] N. Yuhanna, The Forrester Wave: Database
Encryption Solutions, Q3 2005. Forrester, 2005.

[18] J. Black, P. Rogaway, Ciphers with Arbitrary Finite
Domains, RS Data Security Conference,
Cryptographer's Track, Lecture Notes in Computer
Science. Springer, 2002.

[19] M. Medenica, Dj. Dihovicni, Security Point of View
of ASP.NET Application. 13

th
 International

Conference on Advanced Technologies Systems and
Services in Telecommunications - TELSIKS 2017,
IEEE Conference, Nis, Serbia, 2017, pp.403-406.

[20] Dj. Dihovicni, M. Medenica, Development of
software package named "Step method" for robust
time delay systems”. International Journal of
Latest Research in Engineering and Technology, 3
(8), 2017: 36-43.

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License (CC BY-NC 4.0)

https://doi.org/10.1007/11561347_28

